
Principle of Instruction Set Architecture

Jaynarayan T Tudu

Lecture 3, 3.1

IIT Tirupati, India
11th, 12th Feb, 2021

Computer System Architecture

Jaynarayan T Tudu Principle of Instruction Set Architecture



Review From Last Lectures

Trends in Computer Architecture

The Architecture and Design Parameters

Measuring Performances: Benchmark and Metric

Modeling of Energy and Dependability

Jaynarayan T Tudu Principle of Instruction Set Architecture



Instruction Set Architecture

ISA is also known as programmer’s model of machine.

For a programmer or compiler designer the only thing visible is instruction
set architecture.

Different applications requires different set of instruction set.

Desktop system File Server/Data Center Mobile/Embedded application
Integer/FP operation File Operation Energy

Jaynarayan T Tudu Principle of Instruction Set Architecture



Component of ISA

Storage cell (the place where to keep the things)

General and special purpose registers in the CPU
Many general purpose cells of same size in memory
Storage associated with I/O devices

The machine instruction set

The instruction set is the entire repertoire of machine
operations
Makes use of storage cells, formats, and results of the
fetch/execute cycle

Jaynarayan T Tudu Principle of Instruction Set Architecture



Component of ISA

The instruction format

Size, field, and meaning of the field within the instruction

Fetch and execute procedure

Things that are performed prior to knowing the instruction

Jaynarayan T Tudu Principle of Instruction Set Architecture



From C to Assembly view

a ‘C’ programming language statement: f = (g + h)− (i + j);

The set of instruction (called assembly instructions)
add t0, g, h ; t0 ← g + h
add t1, i, j ; t1 ← i + j
sub f, t0, t1 ; f ← t0 - t1
Opcode/mnemonic, operand (source and destination)

The instruction specifies the operation (and operand) to be
performed

Jaynarayan T Tudu Principle of Instruction Set Architecture



What an Instruction Specifies

1 What operation to perform

Example: add r0, r1, r3
Arithmetic, logical etc.

2 Where to find operands

CPU registers
Memory cells
I/O location
Within instruction

3 Place to store the results

CPU registers
Memory cells
I/O location

4 Location of the next instruction

Memory location
(pointed by a register called
Program Counter)

Operation Operands

There could be numerous ways to arrange and specify operands
and operations!

Jaynarayan T Tudu Principle of Instruction Set Architecture



Classification of Instructions

Classification based on behavior:

Data movement Instructions

Move data from a memory location or register to another
memory location or register without changing its form
Load : source is memory and destination is register
Store: source is register and destination is memory

Arithmetic and Logic Instructions

Change the form of one or more operands to produce a result
stored in another location

Control flow instructions

Alter the normal flow of control from executing the next
instruction in sequence
Two type: conditional and unconditional

Jaynarayan T Tudu Principle of Instruction Set Architecture



Classification of Instructions

Classification of underlying architecture based on Internal storage:

Stack Architecture

Accumulator Architecture

Register-Memory Architecture

General Purpose Register Architecture (load-store)

Jaynarayan T Tudu Principle of Instruction Set Architecture



Classification of Instructions

Classification of Architecture based on Internal storage:

Figure : Operand location for diff class of architecure

Jaynarayan T Tudu Principle of Instruction Set Architecture



Classification of Instructions Set Architecture

#Memory Max # Arch type Examples
Address Oprnd

0 3 Load-Store Alpha, ARM, MIPS, PowerPC
1 2 Reg-Mem IBM360, Intel x86, 68000
2 2 Mem-Mem VAX (DEC)
3 3 Mem-Mem VAX (DEC)

VAX: Virtual Address Extension architecure developed by Digital
Equipement Corp in 1977.

Jaynarayan T Tudu Principle of Instruction Set Architecture



Classification of Instructions Set Architecture

Register - Register

Advantages: Simple, fixed length encoding, simple code
generation, all instr. Take same no. of cycles
Disadvantages: Higher instruction count, lower instruction
density

Register - Memory

Advantages: Data can be accessed without separate load
instruction first, instruction format tend to be easy to encode
and yield good density
Disadvantages: Encoding register no and memory address in
each instruction may restrict the no. of registers.

Memory- Memory

Advantages: Most compact, doesn’t waste registers for
temporaries
Disadvantages: Large variation in instruction size, large
variation in in amount of work (NOT USED TODAY)

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address

Interpreting memory address:

Big Endian
Little Endian

Byte addressability and instruction misalignment

Addressing mode

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address

Interpreting memory address: How do you order the bytes?

Example:
Address Bytes

A0 B0

A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

A6 B6

A7 B7

Ordering in word:

Little Endian:
B7 B6 B5 B4 B3 B2 B1 B0

Big Endian:
B0 B1 B2 B3 B4 B5 B6 B7

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address

Interpreting memory address: How do you order the bytes?
The other way to look at the problem:
Given to me a Word, how am I going to keep them in memory?
Word size: 64 bit (hypothetical computer)
B0 B1 B2 B3 B4 B5 B6 B7

BigEndian Ordering
Address Bytes

A0 B0

A1 B1

A2 B2

A3 B3

A4 B4

A5 B5

A6 B6

A7 B7

LittleEndian Ordering
Address Bytes

A0 B7

A1 B6

A2 B5

A3 B4

A4 B3

A5 B2

A6 B1

A7 B0

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address

Interpreting memory address: How do you order the bytes?

Big Endian: A kind of natural ordering; bigger address byte at LSB!
Little Endian: A kind of reverse, smaller address byte at LSB!

Does the order really matter in terms of performance or other
parameters?

Can we order the byte in order? (think from security point of
view!)

How does the exchange of information takes place between
two machines: one with BigEnd and the other with LittleEnd?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address

Byte addressability and Alignment Issue

Figure : Aligned and misaligned bytes

Jaynarayan T Tudu Principle of Instruction Set Architecture



Specifying Memory Address: Intriguing Questions

Natural questions to ask with respect to byte ordering and
alignment:

What is the model of computer memory? How do I visualize
the computer’s memory?

How is memory address specified for an object?

How is memory accessed? Why do we break memory into
elements like “bytes” and “words”?

Why are there variable word size for different architectures?

Why did endian-ness arise? Are there any advantages to one
over the other?

Should a programmer worry about all these things at all?

How does these issues affects overall performance? (a
research question)

Does programming language suffer from these issues,
particularly memory alignment?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Specifying Addrs in Instruction

What are the different ways addresses can be specified in an
instruction?

Register

Immediate

Displacement

Register Indirect

Indexed

Direct/Absolute

Memory indirect

Autoincrement

Autodecrement

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Specifying Addrs in Instruction

What are the different ways operand address can be specified?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Probing Further

Exercises:

How does these addressing mode affects performance?

When shall we call an addressing mode to be power efficient?

How does they impact the hardware complexity?

How can we build a secure ISA? Can we make authorization
for every instructions?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Where they are used?

Statistics on usage of various Addressing modes in different
benchmark

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Displacement Addr Mode

Add R4, 100(R1)
The displacement field affects the instruction length size!

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Immediate Addressing Mode

Add R4, 108 ; Regs[R4] ← Regs[R4] + 108
Where the Immediate values are being used most?

Figure : Usage of immediate operands across the instructions

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Immediate Addressing Mode

Add R4, 108
The immediate and displacement field affects the instruction
length size!

Figure : Number of bits (bit width) used for operations

Jaynarayan T Tudu Principle of Instruction Set Architecture



Operations and Operands

Add R4, 100(R1)
Operation types and Example instructions

Arithmetic and Logic: add, subtract, and, or, multiply, divide,
shift

Data Transfer: move, load, store

Control: branch, jump, call, traps

System: OS CALL, VM, printer etc, network packet

Floating Point: ADDF, MULF, DIVF

Decimal: arithmetic, dec to char convert

String: move, compare, search

Graphics: compress, decomp, pixel, vertex

Jaynarayan T Tudu Principle of Instruction Set Architecture



Operations and Operands

Add R4, (1001) ; Regs[R4] ← Regs[R4] + Mem[1001]

Figure : Distribution of data accesses

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes: Displacement Addr Mode

Add R4, 100(R1)
The displacement field affects the instruction length size!

Jaynarayan T Tudu Principle of Instruction Set Architecture



Analysis of Instruction Frequency

x86 instruction frequency for SPECint92 suit.

Rank Instruction Frequency

1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%

Total 96%

96% of the executed code is dominated by simple instructions! Why this
analysis is important?

How does it appears for SPEC2017 suit?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Analysis of Control Flow Instructions

There are different ways a program control can be changed, which
is achieved by a set of control instructions.

Four different class of control instructions:

Conditional branches
Jump (unconditional branches)
Procedure calls
Procedure returns

Jaynarayan T Tudu Principle of Instruction Set Architecture



Frequency of Control Flow Instructions

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes for Control Flow Instructions

Which type of addressing modes are suitable for control flow
instructions? How to specify the target address?

PC-relative addressing (this is similar to displacement mode)

PC-relative is position independent

How many bits of displacement?

What if the address is not known at the compile time?

Jaynarayan T Tudu Principle of Instruction Set Architecture



Addressing Modes for Control Flow Instructions

What if the address is not known at the compile time?

Specify the target dynamically

Need a register to specify the address dynamically

Register indirect addressing mode is commonly used

Scenario in programming language:

Switch-case: Selecting one among many cases!

Virtual function or Method : Different routines to be called!

funtion pointer

dynamically linked libraries

Jaynarayan T Tudu Principle of Instruction Set Architecture



Analysis of Branch Distance

Figure : Branch distance interms of number of instructions between the
target and the branch

The key point to observe is the number of bits
Jaynarayan T Tudu Principle of Instruction Set Architecture



Analysis of Conditional Branch Instruction

The truth value of condition is: {TRUE, FALSE}

There are three ways to specify the condition:

Condition code (CC)

Test special bits (flag) set by ALU
80x86, ARM, PowerPC, SPARC, SuperH

Condition register/Limited Comparison

Test arbitrary register with the result of simple comparison (for
equality)
Alpha, MIPS

Compare and branch

Compare is part of branch.
RISC-V, VAX

Jaynarayan T Tudu Principle of Instruction Set Architecture



Frequency of Conditional Control Instruction

Figure : Frequency of compares in conditional branch

Jaynarayan T Tudu Principle of Instruction Set Architecture



So far on Instruction Set Analysis

– We have so far seen all the instructions which are visible to the
assembly programmer
– Now, we need to take decision, based on these instruction set, on
designing a hardware.

Jaynarayan T Tudu Principle of Instruction Set Architecture



Encoding an Instruction Set

The basic principles while encoding the instruction set.
The architect must balance several competing forces:

The desire to have as many register and addressing mode as
possible.

The impact of the size of the register and addressing mode
fields on the average instruction size and hence the average
program size.

A desire to have instruction encode into lengths that will be
easy to handle in the implementation

Jaynarayan T Tudu Principle of Instruction Set Architecture



Encoding an Instruction Set

Definition: To represent the instructions in such a way that it
could be decoded by the hardware.
Three choices to encode the instructions:

Variable Length Encoding (All)

Fixed Length Encoding (All)

Variable + Fixed

Jaynarayan T Tudu Principle of Instruction Set Architecture



Encoding an Instruction Set

Three choices to encode the instructions:

Jaynarayan T Tudu Principle of Instruction Set Architecture



Encoding an Instruction Set

Three choices to encode the instructions:

Jaynarayan T Tudu Principle of Instruction Set Architecture



References

Appendix A, Instruction Set Principle; Computer Architecture:
Quant approach; Hennessy n Patterson; 6th Ed.

thank you

Jaynarayan T Tudu Principle of Instruction Set Architecture


