Principle of Instruction Set Architecture

Jaynarayan T Tudu
Lecture 3, 3.1

IIT Tirupati, India
11%h, 12t Feb, 2021
Computer System Architecture

Jaynarayan T Tudu Principle of Instruction Set Architecture

Review From Last Lectures

Trends in Computer Architecture
The Architecture and Design Parameters

Measuring Performances: Benchmark and Metric

Modeling of Energy and Dependability

Jaynarayan T Tudu Principle of Instruction Set Architecture

Instruction Set Architecture

E[~_=
Software ~ -/

| instruction set

Hardware g

@ ISA is also known as programmer's model of machine.

@ For a programmer or compiler designer the only thing visible is instruction
set architecture.

@ Different applications requires different set of instruction set.

Desktop system File Server/Data Center | Mobile/Embedded application
Integer/FP operation | File Operation Energy

Jaynarayan T Tudu Principle of Instruction Set Architecture

Component of ISA

o Storage cell (the place where to keep the things)
o General and special purpose registers in the CPU
e Many general purpose cells of same size in memory
o Storage associated with 1/O devices

@ The machine instruction set

o The instruction set is the entire repertoire of machine
operations

o Makes use of storage cells, formats, and results of the
fetch/execute cycle

Jaynarayan T Tudu Principle of Instruction Set Architecture

Component of ISA

@ The instruction format
e Size, field, and meaning of the field within the instruction

@ Fetch and execute procedure

e Things that are performed prior to knowing the instruction

Jaynarayan T Tudu Principle of Instruction Set Architecture

From C to Assembly view

@ a 'C’ programming language statement: f = (g + h) — (i +J);
o The set of instruction (called assembly instructions)
addt0, g, h;t0 < g+ h
add t1, 0, j;tl <« i+]
sub f, t0, t1 ; f < t0 - t1
o Opcode/mnemonic, operand (source and destination)

The instruction specifies the operation (and operand) to be
performed

Jaynarayan T Tudu Principle of Instruction Set Architecture

What an Instruction Specifies

1 What operation to perform 3 Place to store the results
o Example: add r0, r1, r3 o CPU registers
o Arithmetic, logical etc. e Memory cells
2 Where to find operands @ 1/0 location
o CPU registers 4 Location of the next instruction

o Memory cells e Memory location
o 1/0 location (pointed by a register called
e Within instruction Program Counter)

] Operation \ Operands ‘

There could be numerous ways to arrange and specify operands
and operations!

Jaynarayan T Tudu Principle of Instruction Set Architecture

Classification of Instructions

Classification based on behavior:

@ Data movement Instructions

e Move data from a memory location or register to another
memory location or register without changing its form

e Load: source is memory and destination is register

e Store: source is register and destination is memory

@ Arithmetic and Logic Instructions

o Change the form of one or more operands to produce a result
stored in another location

@ Control flow instructions
o Alter the normal flow of control from executing the next
instruction in sequence
e Two type: conditional and unconditional

Jaynarayan T Tudu Principle of Instruction Set Architecture

Classification of Instructions

Classification of underlying architecture based on Internal storage:

@ Stack Architecture
@ Accumulator Architecture
@ Register-Memory Architecture

@ General Purpose Register Architecture (load-store)

Jaynarayan T Tudu Principle of Instruction Set Architecture

Classification of Instructions

Classification of Architecture based on Internal storage:

Processor
Tos |
Memory
(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/

load-store

Figure : Operand location for diff class of architecure

Jaynarayan T Tudu Principle of Instruction Set Architecture

Classification of Instructions Set Architecture

#Memory | Max # | Arch type | Examples
Address Oprnd
0 3 Load-Store | Alpha, ARM, MIPS, PowerPC
Reg-Mem | IBM360, Intel x86, 68000
Mem-Mem | VAX (DEC)

Mem-Mem | VAX (DEC)

w NN

1
2
3

VAX: Virtual Address Extension architecure developed by Digital
Equipement Corp in 1977.

Jaynarayan T Tudu Principle of Instruction Set Architecture

Classification of Instructions Set Architecture

@ Register - Register
o Advantages: Simple, fixed length encoding, simple code
generation, all instr. Take same no. of cycles
o Disadvantages: Higher instruction count, lower instruction
density
@ Register - Memory
o Advantages: Data can be accessed without separate load
instruction first, instruction format tend to be easy to encode
and yield good density
o Disadvantages: Encoding register no and memory address in
each instruction may restrict the no. of registers.
e Memory- Memory
o Advantages: Most compact, doesn't waste registers for
temporaries
e Disadvantages: Large variation in instruction size, large
variation in in amount of work (NOT USED TODAY)

Jaynarayan T Tudu Principle of Instruction Set Architecture

Specifying Memory Address

@ Interpreting memory address:

e Big Endian
o Little Endian

@ Byte addressability and instruction misalignment
@ Addressing mode

Jaynarayan T Tudu Principle of Instruction Set Architecture

Specifying Memory Address

Interpreting memory address: How do you order the bytes?

Example:
Address | Bytes
Ao By
Aq B
Az B
Az Bs
Aq B,
As Bs
As Bs
A7 Bz

Ordering in word:

Little Endian:

B0 [Bo | B5 [B [B> [B2] B: | By
Big Endian:

(B0 | By] B> B [i | By] B | v

Jaynarayan T Tudu Principle of Instruction Set Architecture

Specifying Memory Address

Interpreting memory address: How do you order the bytes?
The other way to look at the problem:

Given to me a Word, how am | going to keep them in memory?
Word size: 64 bit (hypothetical computer)
(Bo|Bi[B[By [B[Bs| BBy

BigEndian Ordering LittleEndian Ordering
Address | Bytes Address | Bytes
Ao By Ao B
Aq By Ag Bs
As B> As Bs
Az Bs Az B,
Ag B, Ag Bs
As Bs As B>
As Bs As B
A7 B A7 By

Jaynarayan T Tudu Principle of Instruction Set Architecture

Specifying Memory Address

Interpreting memory address: How do you order the bytes?

Big Endian: A kind of natural ordering; bigger address byte at LSB!
Little Endian: A kind of reverse, smaller address byte at LSB!

@ Does the order really matter in terms of performance or other
parameters?

e Can we order the byte in order? (think from security point of
view!)

@ How does the exchange of information takes place between
two machines: one with BigEnd and the other with LittleEnd?

Jaynarayan T Tudu Principle of Instruction Set Architecture

Specifying Memory Address

Byte addressability and Alignment Issue

Value of three low-order bits of byte address

Width of object o 1 2 3 4 5 6 7

1 byte (byte) Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned | Aligned

2 bytes (half word) Aligned ‘ Aligned | Aligned Aligned

2 bytes (half word) Misaligned [Misaligned [Misaligned [Misaligned
4 bytes (word) Aligned [Aligned

4 bytes (word) Misaligned [Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) isali Misaligned
8 bytes (double word) Aligned

8 bytes (double word) Misali 1

Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned
Misaligned

8 bytes (double word) Misaligned
8 bytes (double word) Misaligned

8 bytes (double word)

8 bytes (double word)

Figure : Aligned and misaligned bytes

Jaynarayan T Principle of Instruction Set Architecture

Specifying Memory Address: Intriguing Questions

Natural questions to ask with respect to byte ordering and
alignment:

@ What is the model of computer memory? How do | visualize
the computer’'s memory?
@ How is memory address specified for an object?

@ How is memory accessed? Why do we break memory into
elements like “bytes” and “words"?

@ Why are there variable word size for different architectures?

@ Why did endian-ness arise? Are there any advantages to one
over the other?

@ Should a programmer worry about all these things at all?

@ How does these issues affects overall performance? (a
research question)

@ Does programming language suffer from these issues,
particularly memory alignment?

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Specifying Addrs in Instruction

What are the different ways addresses can be specified in an
instruction?

@ Register)
_ @ Direct/Absolute

@ Immediate oo

_ @ Memory indirect
@ Displacement .

] } @ Autoincrement
@ Register Indirect
@ Autodecrement

@ Indexed

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Specifying Addrs in Instruction

What are the different ways operand address can be specified?

Addressing

mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] .« Regs[R4] When a value is in a register
+Regs[R3]

Immediate Add R4,3 Regs[R4] < Regs[R4]+3 For constants

Displacement

Add R4,100(R1)

Regs[R4]«Regs[R4]
+Mem[100+Regs[R11]

Accessing local variables
(+ simulates register indirect. direct
addressing modes)

Register
indirect

Add R4, (RL)

Regs[R4]«— Regs[R4]
+Mem[Regs[R11]

Accessing using g pointer or a
computed address

Indexed

Add R3. (R1+R2}

Regs[R3]—Regs[R3]
+Mem[Regs[R1]+Regs
[R21]

Sometimes useful in array
addressing: R1 = base of array:
R2 =index amount

Direct or
absolute

Add R1,(1001)

Regs[R1]— Regs[R1]
+Mem[1001]

Sometimes useful for accessing
static data; address constant may
need to be large

Memory
indirect

Add R1,@(R3)

Regs[R1]« Regs[R1]
+Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,
then mode yields *p

Autoincrement

Add R1, (R2)+

Regs[R1]« Regs[R1]
+Mem[Regs[R21]
Regs[RZ] «— Regs[R2]+d

Useful for stepping through arrays
within a loop. R2 points to start of
array; each reference increments R 2
by size of an element, d

Autodecrement

Add R1. -(R2]

Regs[R2]—Regs[R2] - d
Regs[R1]« Regs[R1]
+Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/-increment can also
act as push/pop to implement a
stack

Scaled

Add R1.100(R2)[R3]

Regs[R1] e« Regs[R1]
+MemC100+Regs[R2]
+Regs[R31 * d]

Used to index arays. May be
applied to any indexed addressing
mode in some computers

Principle of Instruction Set Al

Addressing Modes: Probing Further

Exercises:

R”S

TaacRTy

Aad R CRI>

Add R3.(R1=RZ)

Aad R1. (10015

Aad R @(R3)

Add R1.(RZ)+

m Add R1. -(RZ)

Scalcd AGd R1.100CRZ) RS

@ How does these addressing mode affects performance?
@ When shall we call an addressing mode to be power efficient?
@ How does they impact the hardware complexity?

@ How can we build a secure ISA? Can we make authorization
for every instructions?

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Where they are used?

Statistics on usage of various Addressing modes in different
benchmark

TeX

Memory indirect spice
gce

TeX

Scaled spice

gee

. L TeX
Register indirect gpjice
gce

TeX

Immediate spice

gcc

s TeX
Displacement spice

gce

55%

0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Displacement Addr Mode

Add R4, 100(R1)
The displacement field affects the instruction length size!

40%

35%

Integer average
309 A

25%

20%

Floating-point average
15% -

Percentage of displacement

109, o\

5%

0% T T T T T T v T T J ! T T]
o 1 2 3 4 65 6 7 8 9 10 11 12 13 14 15

Number of bits of displacement

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Immediate Addressing Mode

Add R4, 108 ; Regs[R4] < Regs[R4] + 108
Where the Immediate values are being used most?

[Floating-point average
B Integer average

Loads 23%

ALU operations 259%

Allinstructions

21%

0% 5% 10% 15% 20% 25% 30%

Figure : Usage of immediate operands across the instructions

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Immediate Addressing Mode

Add R4, 108
The immediate and displacement field affects the instruction
length size!

45%

Q0% oo }\
35%

j \Fluating-pnim average

e

30%

25%

20%

Percentage of immediates

Integer average
0% T * T T T T T T T

T] T T T d
v} 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15
Number of bits needed for immediate

Figure : Number of bits (bit width) used for operations

Jaynarayan T Tudu Principle of Instruction Set Architecture

Operations and Operands

Add R4, 100(R1)
Operation types and Example instructions

o Arithmetic and Logic: add, subtract, and, or, multiply, divide,
shift

Data Transfer: move, load, store

Control: branch, jump, call, traps

System: OS CALL, VM, printer etc, network packet

Floating Point: ADDF, MULF, DIVF

Decimal: arithmetic, dec to char convert

String: move, compare, search

Graphics: compress, decomp, pixel, vertex

Jaynarayan T Tudu Principle of Instruction Set Architecture

Operations and Operands

Add R4, (1001) ; Regs[R4] <— Regs[R4] + Mem[1001]

Dol Word | 70

(64 bits) 59%
Word | ©9%
(32 bits) 26%

Half word | 0%
(16 bits) 5%

M Floating-point average

@ E?;t:)’ I 1% ik [Integer average
("]

0% 20% 40% 60% 80%

Figure : Distribution of data accesses

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes: Displacement Addr Mode

Add R4, 100(R1)
The displacement field affects the instruction length size!

40%

35%

Integer average
309 A

25%

20%

Floating-point average
15% -

Percentage of displacement

109, o\

5%

0% T T T T T T v T T J ! T T]
o 1 2 3 4 65 6 7 8 9 10 11 12 13 14 15

Number of bits of displacement

Jaynarayan T Tudu Principle of Instruction Set Architecture

Analysis of Instruction Frequency

x86 instruction frequency for SPECint92 suit.

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%
Total 96%

96% of the executed code is dominated by simple instructions! Why this
analysis is important?
How does it appears for SPEC2017 suit?

Jaynarayan T Tudu Principle of Instruction Set Architecture

Analysis of Control Flow Instructions

There are different ways a program control can be changed, which
is achieved by a set of control instructions.

@ Four different class of control instructions:
Conditional branches

Jump (unconditional branches)
Procedure calls

Procedure returns

Jaynarayan T Tudu Principle of Instruction Set Architecture

Frequency of Control Flow Instructions

H Floating-point average
M Integer average

8%

Call/return

Jump

82%
75%

Conditional branch

0% 25% 50% 75% 100%
Frequency of branch instructions

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes for Control Flow Instructions

Which type of addressing modes are suitable for control flow
instructions? How to specify the target address?

@ PC-relative addressing (this is similar to displacement mode)
@ PC-relative is position independent

@ How many bits of displacement?

What if the address is not known at the compile time?

Jaynarayan T Tudu Principle of Instruction Set Architecture

Addressing Modes for Control Flow Instructions

What if the address is not known at the compile time?

@ Specify the target dynamically

@ Need a register to specify the address dynamically

@ Register indirect addressing mode is commonly used
Scenario in programming language:

@ Switch-case: Selecting one among many cases!

e Virtual function or Method: Different routines to be called!
e funtion pointer
°

dynamically linked libraries

Jaynarayan T Tudu Principle of Instruction Set Architecture

Analysis of Branch Distance

30% - s ; : =
20%
15%

Integer

10% J—==c

Percentage of distance

5% 4

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement

Figure : Branch distance interms of number of instructions between the
target and the branch

The key point to observe is the number of bits

Jaynarayan T Tudu Principle of Instruction Set Architecture

Analysis of Conditional Branch Instruction

The truth value of condition is: {TRUE, FALSE}

There are three ways to specify the condition:

e Condition code (CC)

o Test special bits (flag) set by ALU
e 80x86, ARM, PowerPC, SPARC, SuperH

e Condition register/Limited Comparison
o Test arbitrary register with the result of simple comparison (for
equality)
e Alpha, MIPS
@ Compare and branch

o Compare is part of branch.
e RISC-V, VAX

Jaynarayan T Tudu Principle of Instruction Set Architecture

Frequency of Conditional Control Instruction

[Floating-point average

o
5% M Integer average

Not equal

Equal

Greater than or equal

Greater than

o
Less than or equal A0

34 %

Less than 259,

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Figure : Frequency of compares in conditional branch

Jaynarayan T Tudu Principle of Instruction Set Architecture

So far on Instruction Set Analysis

— We have so far seen all the instructions which are visible to the
assembly programmer

— Now, we need to take decision, based on these instruction set, on
designing a hardware.

Jaynarayan T Tudu Principle of Instruction Set Architecture

Encoding an Instruction Set

The basic principles while encoding the instruction set.
The architect must balance several competing forces:

@ The desire to have as many register and addressing mode as
possible.

@ The impact of the size of the register and addressing mode
fields on the average instruction size and hence the average
program size.

@ A desire to have instruction encode into lengths that will be
easy to handle in the implementation

Jaynarayan T Tudu Principle of Instruction Set Architecture

Encoding an Instruction Set

Definition: To represent the instructions in such a way that it
could be decoded by the hardware.
Three choices to encode the instructions:

@ Variable Length Encoding (All)
o Fixed Length Encoding (All)
@ Variable + Fixed

Jaynarayan T Tudu Principle of Instruction Set Architecture

Encoding an Instruction Set

Three choices to encode the instructions:

Operation and | Address | Address Address Address
no. of operands | specifier 1 | field 1 specifiern | field n

(A) Variable (e.g., Intel 80x86, VAX)

Operation Address Address Address
fiald 1 field 2 field 3

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

Jaynarayan T Tudu Principle of Instruction Set Architecture

Encoding an Instruction Set

Three choices to encode the instructions:

Operation and | Address | Address ... | Address Address
no. of operands | specifier 1| field 1 specifiern | fieldn

(A) Variable (e.g., Intel 80x86, VAX)

Operation Address Address Address
field 1 field 2 field 3

(B) Fixed (e.g., RISC V, ARM, MIPS, PowerPC, SPARC)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(C) Hybrid (e.g., RISC V Compressed (RV32IC), IBM 360/370, microMIPS, Arm Thumb2)

Jaynarayan T Tudu Principle of Instruction Set Architecture

References

o Appendix A, Instruction Set Principle; Computer Architecture:
Quant approach; Hennessy n Patterson; 6" Ed.

thank you

Jaynarayan T Tudu Principle of Instruction Set Architecture

