Computer Architecture: The Beginning

Jaynarayan Tudu

Computer Science and Engineering Indian Institue of Technology Tirupati, India

CS5202 - Lecture 0 18th Jan, 2021

VLSI Past and Lesson Learnt

- It all started with Moore's Law
- The corollary of Moore's Law
 - Performance
 - Power, Energy and Temperature (the Dennard Scaling)
 - Reliability
 - Complexity of the Design
- Evolution in computing

CMOS Transistor

Figure : nmos and pmos transistors $^{\mathrm{1}}$

¹Taken from: CMOS VLSI Des, Weste and Hariss

Transistor and IC History

Figure : The first transistor and IC built at AT&T Bell Lab $^{\rm 2}$

²Taken from: CMOS VLSI Des, Weste and Hariss

Transistor Scaling: Moore's Law

Manufacturing Cost: Moore's Law

Transistor count

Figure: Its is now in billion era

Transistor Production

Figure: It is growing every year [IEEE Spectrum]

Transistor Technology Trend

Figure: Scaling driven technology

Trends in Functionality in Microprocessor

Figure: Microprocessor Functionality

The highest till date: IBM P6 at 5.0 GHz.

Frequency [ITRS 2013]

Figure: the rate has slowed down

Intel Microprocessor Trend: Clock frequency

Figure: Clock frequency has been consistently in rise!

Power Density Trend [ITRS 2015 — A Kahng, UCSD]

Figure: Peak power density trend

Power Consumption [Borkar et al]

Figure: Processor power consumption

Heat Flux [IBM — ITRS 2015 meeting]

Figure: Heat flux Watt/area

There is a need of new device technology to tackle the heat flux!

Exascale Computing: Trends in Top500.org

- Power and Energy will pose a major challenge [Borkar 2011].
- GWatt consumption is expected.

Exascale Computing: Trends in Top500.org

- Power and Energy will pose a major challenge [Borkar 2011].
- GWatt consumption is expected.

Power Trend in Top500

Performance per Watt Trend [top500.org]

Memory Wall: Hindrance in performance

Emerging Memory Technology [ITRS 2015 meeting]

Solution: The idea is to bring in hierarchy system!

Figure: Focus is on non-volatile memory

On die Cache [Borkar et al]

•

Figure: Suppose to increase

Emerging Architecture

von Neumann

• The traditional microprocessor

Non von Neumann

- Cellular Automata
- Co-located memory-logic [procesor-in-memory, memory-in-logic, nonvolatile logic]
- Reconfigurable computing
- Cognitive computing [neuro morphic, machine learning]
- Statistical and stochastic computing [statistical inference, approx computing]

Emerging Architecture: Data and learning

In Design or test production

- Tensor Processing Unit [Google ML processing for Search and Language]
- Microsoft Azure with Stratix 10 (intel) FPGA
- XPU by Xiling for Machine learning
- IPU (Intelligent Proc Unit) by Graphcore
- DPU (Data flow computnig) by Wavecore
- DLU by Fujitsu

Check out top500 for more information.

Trends in IoT

Figure: IoT in use

Summary and Action Items

- There are problems to be solved
- Teaching and research to continue...

The big question

How to push forward the performance while controlling significantly the power/energy dissipation/consumption?

CS5202: Course Outline

- Performance Evaluation [in depth]
- Instruction set Architecture: CISC vs. RISC [in depth]
- Memory system architecture: Main memory and cache architecture [in depth]
- Pipelining and Superscalar Architecture [in depth]
- VLIW and Multi-scalar Architectures [introductory]
- Simultaneous Multi-threaded (SMT) Architecture [in depth]
- Multi-core Architecture [introductory]
- SIMD, GPU Architecture and Accelerator Design [introductory]

Course Schedule and Meeting

Schedule:

Slot G

Monday: 12 - 12:50, Tuesday: 14 - 14:50, Friday: 14- 14:50

- Meeting:
 - TAs: Aditi Palit, PhD student CSE cs21d001[at]iittp.******
 - Instructor: Jaynarayan T Tudu jtt[at]iittp.*****
 #1, 2nd Floor, Annex building, Temp Campus, IIT Tirupati http://jayresearch.github.io

Course Evaluation

Quizes (Qz1: 10 and Qz2: 10)	20%
Class Test and Participation	10%
Assignment (Programming/simulator)	10%
Project (Group of 2)	20%
Final Test	40%

Reference and Reading Materials

- J. L. Hennessy and D. A. Patterson, Computer Architectures: A Quantitative Approach, Morgan Kaufmann Publishers, 5th Edition.
- J.P. Shen and M.H. Lipasti, Modern Processor Design, MC Graw Hill, Crowfordsville, 2005
- Current Literature (from ISCA, Micro, HPCA, ICCD, and IEEE Trans. on Computers, IEEE Architecture Letters)

The other resources:

- http://pages.cs.wisc.edu/ arch/www/
- Prof. Onur Mutlu: https://users.ece.cmu.edu/omutlu/
- Almost all universities have very strong research group
- SPEC Benchmark: https://www.spec.org/benchmarks.html
- Simulators: simplescalar, sniper, gem5, gpgpu-sim, tejas
- DBLP: https://dblp.uni-trier.de/

Research in India

- IISc Bangalore: Prof Matthew Jacob, Prof. R Govind Rajan,
 Dr. Uday Bandagolu, Dr. Arka Basu, Prof. S K Nandi.
- IIT Bombay: Prof. Virendra Singh, Prof. Sachin Patkar, and Prof. Madhava Desai.
- IIT Madras: Prof. V Kamakoti, Dr. Rupesh Nasre, Prof. Madhu Mutyam
- IIT Delhi: Prof. Pritiranjan Panda, Prof. Smruti Sarangi
- IIT Kanpur: Prof. Mainak Chaoudhuri, Dr. Biswabandan Panda
- IIT/IIIT Hyderabad: Dr. Mittal, Dr. Lavanya

Thank You

Acknowledgement:

- Prof Virendra Singh, IIT Bombay
- Prof Matthew Jacob, IISc Bangalore
- Prof R Govind Rajan, IISc Bangalore
- Prof C Chandrasekhar, IIT Madras
- Prof Kewal Saluja, Uni of Wisconsin
- Prof Adit Singh, Auburn University
- Prof Ravi Iyer, IIT Tirupati