

Cache Memory
Technology, Organization and Architecture

Computer System Architecture (CS5202)
IIT Tirupati

 March 2020
Jaynarayan t tudu

jtt@iittp.ac.in

mailto:jtt@iittp.ac.in

Last Lecture

● Trends in Computer Architecture
● Fundamentals of Computer System Design
● Performance Measurement: Bench mark and

Metrics
● Analysis of Instructions

– Addressing Modes
– Example ISA: RISC and CISC types

Memory Design

● Moore’s Law and memory wall (identifying the
problem)

● Memory hierarchy system (why we need it)
● Memory cell design (technology to store a bit)
● Introductory concepts of memory system

design

We will be discussing following topics with respect to memory design. The basic idea starts
from storing a single bit of information to a set of bits and be able to locate them and access
them for some purpose.

Review of Data Representation
● This is one of the fundamental ideas in computer science which enables to represent the objects of

physical world into the computer. So, we may think of computer as another world where each of the
objects are identified with different rules. Data representation is one of the techniques which maps the
objective in physical world into the objects of computational world.

● Generally the physical world is represented with a set of Characters and Numbers. The characters
could be from any natural language scripts such as English, Devanagari etc. There are many possible
ways in which the character and numbers are represented in computers.

● Considering advantage and disadvantages with respect to size of bits and computational complexity
there are various coding scheme for specific purposes. Generally, for human interaction ASCII and
Universal code (Unicode) systems are used, whereas, for computation binary representation(2’s
complement and floating-point) are used.

ASCII (Example)

- Uses 8 bits to represent A-Z, a-z, 0-9,
and special characters/symbols

- Used for I/O interface; keyboard and display

Review of Data Representation
● This is one of the fundamental ideas in computer science which enables to represent the objects of

physical world into the computer. So, we may think of computer as another world where each of the
objects are identified with different rules. Data representation is one of the techniques which maps the
objective in physical world into the objects of computational world.

● Generally the physical world is represented with a set of Characters and Numbers. The characters
could be from any natural language scripts such as English, Devanagari etc. There are many possible
ways in which the character and numbers are represented in computers.

● Considering advantage and disadvantages with respect to size of bits and computational complexity
there are various coding scheme for specific purposes. Generally, for human interaction ASCII and
Universal code (Unicode) systems are used, whereas, for computation binary representation(2’s
complement and floating-point) are used.

Unicode (Universal Code)

- Variable coding scheme
- Used to code all the scripts on this earth
- Used primarily for HTML pages

Review of Data Representation

Data Representation for Computation

Binary: Integer

- 1’s and 2’s complement coding system
- 2’s complement is currently being used
- Different coding scheme are possible, could be used for specific
 purpose

Floating point:
- 32 bit standard or single precision
- 64 bit standard or double precision
- (smaller representation using 8 or 16 bit is also possible)

Memory System Design

Requirements:
● Able to store a set of bits
● Able to locate
● Able to retrieve as needed

How to store a bit?

- Technology: CMOS transistor, capacitor, Magnetic
surface, and (currently under research: phase and resistor)

- Design: Static random access memory (SRAM)
 Dynamic random access memory (DRAM)
 (For more refer: ITRS 2015 report on recent memory design)

Memory Cell: storing a bit
SRAM Cell (6 Transistors cell) SRAM Memory Array

Col addr dec

n+m

m

n 2^n
rows

2^m lines

Single bit1) Address decode
2) Drive row select
3) Selected bit-cells drive bitlines
4) Sense amplifier senses the bit difference
5) Column address decode and select
6) Pre-charge all the bitlines for next read/write

The same structure can be replicated for
simultaneous read or write of multiple data

Step 2 and 3 dominates the access time,
Step 2, 3 and 5 dominates the cycle time

Sense Amp/Row Buff

Memory Cell: storing a bit
DRAM Cell (1 transistor + 1 capacitor)
[Dynamic RAM]

DRAM Memory Array

Col addr dec

n+m

m

n 2^n
rows

2^m lines

Single bit

1) Row address decode from RAS
2) Drive row select
3) Selected bit-cells drive bitlines
4) Sense amplifier senses the bit difference
5) Column address decode from CAS and select
6) Pre-charge all the bitlines for next read/write The same structure can be replicated for

simultaneous read or write of multiple data

RAS

CAS

RAS: Row Address Strobe
CAS: Column Address Strobe

Row select line

Refresh: Needed to restore the charge stored in capacitor.
 This has to be done peridically (typically 10s of ms)

transistor

capacitor

Detail in Main Memory
Lecture

Sense Amp/Row Buff

SRAM Memory Array
How to access more than just one bit simultaneously?

SRAM Memory Array

Col addr dec

n+m

m

n 2^n
rows

2^m cols

bit_1

- Above design to access 2 bit simultaneously.
- Similarly for 8 bit access, 8 such memory array can be replicated.

SRAM Memory Array

Col addr dec

m

n 2^n
rows

2^m cols

bit_0

Sense Amp/Row BuffSense Amp/Row Buff

Byte Address-ability
- The row and column decides the address of a bit (or a group of bits)
- Address can be assigned to single bit, to two bits, or to 8 bits or
 to any number of bits.
- Byte address-ability means that an 8 bits (1 byte) data is having unique address
- Byte addressable memory can be designed by replicating 8 memory arrays

Block Diagram: (Logical Arrangement of Bytes – this is little endian)
Byte 0

Address 0
Byte 1

Address 1
Byte 2

Address 2
Byte 3

Address 3

Byte 4
Address 4

Byte 5
Address 5

Byte 6
Address 6

Byte 7
Address 7

Byte n-4
Address n-4

Byte n-3
Address n-3

Byte n-2
Address n-2

Byte n-1
Address n-1

Notes: Each of these bytes could go to different devices in physical memory array,
 For example: interleaving way of arrangement

Storing and Accessing Program
Program: is defined as a well define set of instructions
Instruction: is defined as an operation to be performed on operands

Instruction Data

Program As discussed during ISA:

Instruction and Data both have to have
some sort of format.

Data can be stored in many places (register, immediate, I/O etc.),
here we will examine the memory that store data.

Example:
Instruction: can be of fixed format (RISC type) or variable (CISC type) or hybridized.
Data: can be 1 byte (8 bits), 1 word (could be 16 or 32 bits),
 double word etc (this is design dependent)

So, the question is: How to store instructions and data?

Storing and Accessing Program

Example of Fixed instruction format of 32 bit:

Byte 3 Byte 2 Byte 1 Byte 0

07152331

Some architecture define this as one word
(MIPS and RISC), x86_64 has 16 bit word size

Similarly for Data (could 8 bit, 16 bit, 32 bit or 64 bit):
(why did most of the architect chose the data size to be power of 2?)

Byte 3 Byte 2 Byte 1 Byte 0

07152331

Byte 1 Byte 0

0715

Byte 0

07

Concept of Memory Block
Recall the issues of Memory Alignment!

You have to pay penalty of memory access if it is miss-aligned (crossing the word boundary)!

Concept of Memory Block

The idea is whenever you access the memory, don’t just access a byte or a word

rather do it for group of words! Will it be helpful anyway?

The program analysis show that, the program exhibits a property called locality. Whenever an
Instruction is being accessed very soon the next instruction also will be accessed. And,
whenever an instruction is being accessed very likely that same instruction be accessed again.

Example:
This instruction is likely to be
repeated soon: Temporal Locality

Each of these
 will be executed
one after another
(Spatial Locality)

Therefore, this can be a
memory block.

Concept of Memory Block

- Temporal locality
 (this tells you keep the same thing for longer time)

- Spatial locality
 (this tells you keep two or more things together)

- Algorithm locality
 (Two separately located objects are being accessed in pattern.
 This tells you to keep two non consecutive blocks in cache)

Principle of Locality:

Locality in general could have many reasons, the idea is how does any two instructions or
data being accessed in very short duration of time (short is tricky here).

Concept of Memory Block
It is good, therefore, to group a multiple words to form a memory block.

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Byte 3 Byte 2 Byte 1 Byte 0

Word 0

Word 1

Word 2

Word 3

Word 0

Word 1

Word 2

Word 3

B
L
O
C
K
0

B
L
O
C
K
1

Addressing:

w w b bblkblkblkblk b – byte
w – word
blk – Block

The Cache Memory

The performance Gap

How to solve the problem of performance gap?

One solution is memory hierarchy!

The gap is in the order of 1000!

The Cache Memory

Memory hierarchy system of Personal Computers

Cost per bit Reduces, size and density increases

Performance increases

The Cache Memory

Consider the simplified hierarchy system.

CPU
L1

Cache
Main

Memory
Registers

Block 0

Block 1

Main Memory

Block n

Block i

Fixed block size
= n number of words

- The goal is to bring the blocks from main memory and place them in cache!

- The block size in main memory and cache memory need to be equal.
 (Can the block size of main memory and cache be different, if so how?)

- CPU finally needs a word, it does not process a block at a time!

The Cache Memory

Example:

Given a memory (does not matter cache or main) of size 512 bytes
Block size = 4 words
Word size = 4 bytes
How many blocks are possible? And what would be minimum address size?

The total number of blocks = 512 / 16 = 32 blocks

Size of block address bits = 5 bits
Size of word address bits = 2
Size of bytes address bits = 2

Addressing in Block:

Block number Block
offset

(5 bits) (4 bits)

Main
Memory

Block 0

Block 1

Main Memory

Block n

How do you
decide
What should be
the size of
Block?
(Research!)

Cache Memory: Four Questions

CPU
L1

Cache
Main

Memory
Registers

Block 0

Block 1

Main Memory

Block n

Block i

● Where to place a block in the cache?
● How to find the placed block?
● Which block should be replaced on miss?
● What happen when content of block is updated?

Its a mapping between main and cache

The First Question

CPU
L1

Cache
Main

Memory
Registers

Block 0

Block 1

Main Memory

Block n

Block i

Where to place?

Why to worry about this question? Because size of Cache is smaller than size of main.

1
2
3
4
5
6
n

1
2
3
m

y = f(x) x = f_inverse (y)

| X | > |Y|

The First Question

CPU
L1

Cache
Main

Memory
Registers

Block 0

Block 1

Main Memory

Block n

Block i

General thoughts:

 Thought 1: Let any main memory bock occupy any cache block
 Thought 2: Only a selected main memory block occupy a designated set of cache block
 Thought 3: Let a designated set of main block occupy a fixed cache block
 Thought 4: Any other possibilities? Looks like no possibility!

Standard name:

Thought 1: Fully associative mapping
Thought 2: Set associative mapping
Thought 3: Direct mapping

Where to place?

Last page

- Bruce Jacob, Spencer Ng, and David Wang; Memory Systems: Cache,
 DRAM, Disk; 2008, Elesevier. (Refer: Chapter 1 and Chapter 5)

Thank You

- Hennessy & Patterson, Computer Architecture Quantitative Approach,
 Appendix B, Review of Memory Hierarchy,

Reference:

- Patterson & Hennessy, Computer Organization and Design, Chapter 5, Large
 and Fast Exploiting Memory Hierarchy .

Additional Pages

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

