
1/36

Performance Modeling and Measurement

Jaynaryan T Tudu

Indian Institute of Technology Tirupati, India

21st January, 2020
CS5202-Computer System Architecture

Jaynaryan T Tudu Performance Modeling and Measurement



3/36

Computer Architecture: The Challenges

Exercise in engineering trade-off analysis

Find the fastest/cheapest/power-efficient/etc. solution
Optimization problem with 100s of variables

Performance (better) Cost (lesser) Power (lesser)

All the variables are changing

At non-uniform rates
With inflection points

Two high-level effects:

Technology push
Application pull

Jaynaryan T Tudu Performance Modeling and Measurement



4/36

Performance Growth: 1978 to 2018

Figure : Growth of performance over last 40 years

1978 to 1986: Doubling every 3.5 years
1988 to 2002: Doubling every 2 years
2002 to 2010: Doubling every 4 years
2010 to 2014: Doubling every 8 years
2014 to 2018: Doubling every 20 years

Jaynaryan T Tudu Performance Modeling and Measurement



5/36

Performance vs Design Time

-

Better performance need more design time
- Time-to-market is critically important

Example:

Let a new design may take 3 years

It will be 3 times faster

But if technology improves 50%/year

In 3 years 1.53 = 3.38

So the new design is worse! (unless it also employs new
technology)

Jaynaryan T Tudu Performance Modeling and Measurement



6/36

Performance and Cost

Why do a computer architecture/designer need cost analysis?
Ans: Whether to include the new feature for performance or not?

Cost

Three main component of cost analysis:

Cost of manufacturing

Cost of purchasing (Price)

Cost of operation

Cost of Manufacturing:
Cost of an IC =

Cost of die+Cost of die test+Cost of Packaging and Manufacturing test
Final test yield

Jaynaryan T Tudu Performance Modeling and Measurement



7/36

Performance vs Cost

Corollary to Moore’s Law (the transistor density double every
18 months):

Cost halves every two years

Computers cost-effective for

National security : weapons design
Enterprise computing : banking
Departmental computing : computer-aided design
Personal computer : spreadsheets,email, web
Pervasive computing : prescription drug labels

Jaynaryan T Tudu Performance Modeling and Measurement



8/36

Performance Measurement

Which computer is fastest?

The answer is not so simple

Scientific simulation - FP performance
Program development - Integer performance
Database workload - Memory, I/O

Jaynaryan T Tudu Performance Modeling and Measurement



9/36

Performance Measurement of Computer

Want to buy the fastest computer for what you want to do?

Workload is all-important
Correct measurement and analysis

Want to design the fastest computer for what the customer
wants to pay?

Cost is an important criterion

Jaynaryan T Tudu Performance Modeling and Measurement



10/36

Defining Performance

What is important to whom?

Computer System User:

Minimize elapsed time for program = time end - time start
This is called: response time

Computer Center Manager:

Maximize completion rate = #jobs
second

Called throughput

Jaynaryan T Tudu Performance Modeling and Measurement



11/36

Defining Performance for Computer Architect

CPU time = time spent running a program

Intuitively, bigger should be faster, therefore:
Performance = 1

Xtime , where X is response time or CPU
Execution time etc.

Elapsed time = CPU time + I/O waiting

Our focus will be on CPU time.

Jaynaryan T Tudu Performance Modeling and Measurement



12/36

To Improve Performance

1 Response time

2 Throughput

Faster CPU:
Improves both: response time and throughput

Add more CPUs:
Improves throughput and (perhaps response time due to less
queueing)

Jaynaryan T Tudu Performance Modeling and Measurement



13/36

Performance Comparison

Machine A is n times faster than machine B iff:
perf(A)/perf(B) = time(B)/time(A) = n

Machine A is x% faster than machine B iff:
perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

Example

time(A) = 10s, time(B) = 15s
15/10 = 1.5 ⇒ A is 1.5 times faster than B
15/10 = 1.5 ⇒ A is 50% faster than B

Jaynaryan T Tudu Performance Modeling and Measurement



14/36

Performance Metrics

Other than CPU time and throughput there are two important
metrics to quantify the performance.

MIPS: Millions of Instruction per Second

MFLOPS: Millions of Floating Point Operation per Second

MIPS = instruction count/(execution time x 106 )
= clock rate/(CPI x 106 )
Execution time = instruction count x CPI

Clock rate

But MIPS has serious shortcomings

Jaynaryan T Tudu Performance Modeling and Measurement



15/36

Limitations of MIPS: Example

E.g. without FP hardware, an FP op may take 50 single-cycle
instructions (It uses Floating point subroutine of simpler
instructions)

With FP hardware, only one 2-cycle instruction

Considering clock-rate = 1 MHz

Thus, adding FP Hardware:

CPI increases: without FP: 50/50 ⇒ with FP: 2/1
Instruction/program decreases:
without FP: 50/1 ⇒ with FP: 1/1
Total execution time decreases: without FP: 50 ⇒ with FP: 2
But, MIPS gets worse:
without FP: 1 MIPS ⇒ with FP: 0.5 MIPS

MIPS = clock rate/(CPI x 106 )

Jaynaryan T Tudu Performance Modeling and Measurement



16/36

Limitations of MIPS: Example

Give a program having following set of instructions:
Operation Frequency CPI

ALU Operations 43% 1
Loads 21% 2
Stores 12% 2

branches 24% 2

Compiler 1: un-optimized with 100% instruction count

Compiler 2: optimized with 50% reduction in ALU instruction
count

Considering clock-rate = 50 MHz (therefore: cycle time =
20ns)

Compute the MIPS for Compiler 1 and Compiler 2?

MIPS = clock rate/(CPI x 106 )

Jaynaryan T Tudu Performance Modeling and Measurement



17/36

Limitations of MIPS: Three points

1 MIPS is dependent on instruction set. (Difficult to compare
across platform)

2 MIPS varies between program on same machine (compiler
effect)

3 MIPS can vary inversely to performance (the FP hardware
example)

MIPS is used to measure the peak performance and not the
overall performance

MIPS is fine on same compiler on same ISA (on two different
machines)

Example: AMD compared with Intel

Reason is: the instruction/program remain constant (what
differ is CPI and clock-rate)

Jaynaryan T Tudu Performance Modeling and Measurement



18/36

Limitations of MIPS: Three points

MFLOPS = FP ops in program/(execution time x 106 )

Assuming FP ops independent of compiler and ISA

Often safe for numeric codes: matrix size determines # of FP
ops/program
However, not always safe:
Missing instructions (e.g. FP divide)
Optimizing compilers

Relative MIPS and normalized MFLOPS adds to confusion

Therefor, the preferred is CPU time! The ”Iron Law” of processor
performance.

Jaynaryan T Tudu Performance Modeling and Measurement



19/36

The Iron Law Example

Machine A: clock 1ns, CPI 2.0, for program x

Machine B: clock 2ns, CPI 1.2, for program x

Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle
Time(A) = N x 2.0 x 1 = 2N
Time(B) = N x 1.2 x 2 = 2.4N
Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

So, Machine A is 20% faster than Machine B for this program

Jaynaryan T Tudu Performance Modeling and Measurement



20/36

The Central Question is Which Program

Execution time of what program?

Best case: Execute the same set of programs on different
machines

Use of benchmarks:

Programs chosen to measure performance
Predict performance of actual workload
Saves effort and money
Representative? Honest?

Jaynaryan T Tudu Performance Modeling and Measurement



21/36

The SPEC Benchmark

SPEC

SPEC: Standard Performance Evaluation Corporation

Formed in 80s to standardise the evaluation process

SPEC89, SPEC92, SPEC95, SPEC2000, SPEC2006, and
SPEC2017 (the most recent one)

Jaynaryan T Tudu Performance Modeling and Measurement



22/36

The SPEC2017

SPEC CPU2017 has 43 benchmarks, organized into 4 suites:

SPECrate 2017 Integer
SPECspeed 2017 Integer
SPECrate 2017 Floating Point
SPECspeed 2017 Floating Point

Difference between rate and speed: compile flags; workload sizes;
and run rules
Example: Compiler parallelization allowed for SPECspeed but not
allowed for SPECrate

Jaynaryan T Tudu Performance Modeling and Measurement



23/36

The SPEC2017: SPECrate 2017 Int

SPECrate 2017 Int Language KLOC Application Area

500.perlbench r C 362 Perl interpreter
502.gcc r C 1,304 GNU C compiler
505.mcf r C 3 Route planning
520.omnetpp r C++ 134 Discrete Event simulation - com-net
523.xalancbmk r C++ 520 XML to HTML conversion via XSLT
525.x264 r C 96 Video compression
531.deepsjeng r C++ 10 AI: alpha-beta tree search (Chess)
541.leela r C++ 21 AI: Monte Carlo tree search (Go)
548.exchange2 r Fortran 1 AI: recursive solution generator (Sudoku)
557.xz r C 33 General data compression

Source: https://www.spec.org/cpu2017/Docs/index.html#benchmarks

Jaynaryan T Tudu Performance Modeling and Measurement



24/36

The SPEC2017: SPECspeed 2017 Int

SPECspeed 2017 Int Language KLOC Application Area

600.perlbench s C 362 Perl interpreter
602.gcc s C 1,304 GNU C compiler
605.mcf s C 3 Route planning
620.omnetpp s C++ 134 Discrete Event simulation - com-net
623.xalancbmk s C++ 520 XML to HTML conversion via XSLT
625.x264 s C 96 Video compression
631.deepsjeng s C++ 10 AI: alpha-beta tree search (Chess)
641.leela s C++ 21 AI: Monte Carlo tree search (Go)
648.exchange2 s Fortran 1 AI: recursive solution generator (Sudoku)
657.xz s C 33 General data compression

Source: https://www.spec.org/cpu2017/Docs/index.html#benchmarks

Jaynaryan T Tudu Performance Modeling and Measurement



25/36

The SPEC2017: SPECrate 2017 FP

SPECrate 2017 FP Language KLOC Application Area

503.bwaves r Fortran 1 Explosion modeling
507.cactuBSSN r C++, C, Fortran 257 Physics: relativity
508.namd r C++ 8 Molecular dynamics
510.parest r C++ 427 Biomedical imaging: OT with FE
511.povray r C++, C 170 Ray tracing
519.lbm r C 1 Fluid dynamics
521.wrf r Fortran, C 991 Weather forecasting
526.blender r C++, C 1,577 3D rendering and animation
527.cam4 r Fortran, C 407 Atmosphere modeling
538.imagick r C 259 Image manipulation
544.nab r C 24 Molecular dynamics
549.fotonik3d r Fortran 14 Computational Electromagnetics
554.roms r Fortran 210 Regional ocean modeling

Jaynaryan T Tudu Performance Modeling and Measurement



26/36

The SPEC2017: SPECspeed 2017 FP

SPECspeed 2017 FP Language KLOC Application Area

603.bwaves s Fortran 1 Explosion modeling
607.cactuBSSN s C++, C, Fortran 257 Physics: relativity
608.namd s C++ 8 Molecular dynamics
610.parest s C++ 427 Biomedical imaging: OT with FE
611.povray s C++, C 170 Ray tracing
619.lbm s C 1 Fluid dynamics
621.wrf s Fortran, C 991 Weather forecasting
626.blender s C++, C 1,577 3D rendering and animation
627.cam4 s Fortran, C 407 Atmosphere modeling
628.pop2 s Fortran, C 338 Wide-scale ocean modeling (climate level)
638.imagick s C 259 Image manipulation
644.nab s C 24 Molecular dynamics
649.fotonik3d s Fortran 14 Computational Electromagnetics
654.roms s Fortran 210 Regional ocean modeling

Jaynaryan T Tudu Performance Modeling and Measurement



27/36

SPEC benchmark: How it has evolved

Figure : Evolution of SPEC benchmark since 1989 to 2017.

GCC the oldest to survive till date.

There are total of 89 benchmarks so far in SPEC.

Jaynaryan T Tudu Performance Modeling and Measurement



28/36

Summarising the Performance Results

Example:
The total execution time.

Machine A Machine B

Program 1 1 10
Program 2 1000 100
Total 1001 110

The one answer with unique number for execution time:
How much faster is B: Total(A)/Total(B) = 9.1 time

Jaynaryan T Tudu Performance Modeling and Measurement



29/36

Summerising the Performance: Arithmetic Mean

arith mean(A) = 1001/2 = 500.5

arith mean(B) = 110/2 = 55

arith mean(A) / arith mean(B) = 9.1

The General formula:
∑n

i=1 exectime(i)/n

If the programs are executed nonuniformly the weighted AM
could be applied:

∑n
i=1 weight(i)∗exectime(i)∑

weight(i)

where n is total programs.

Jaynaryan T Tudu Performance Modeling and Measurement



30/36

Summerising the Performance: Harmonic Mean

Harmonic mean:

1/H =
∑n

i=1 1/exectime(i)
n

H = n/
∑n

i=1 1/exectime(i)

The use is useful where the sample points are in rates or
performance. (Example: reporting MIPS or MFLOPS)

Rate has time denominator (1/ti )

Jaynaryan T Tudu Performance Modeling and Measurement



31/36

Summerising the Performance: Dealing with Ratios

Example:

Machine A Machine B

Program 1 1 10
Program 2 1000 100
Total 1001 110

Lets take ration with respect to A (normalise with respect to A)

Machine A Machine B

Program 1 1 10
Program 2 1 0.1
Average 1 5.05

Jaynaryan T Tudu Performance Modeling and Measurement



32/36

Summerising the Performance: Dealing with Ratios

Example:

Machine A Machine B

Program 1 1 10
Program 2 1000 100
Total 1001 110

Lets take ration with respect to B (normalise with respect to B)

Machine A Machine B

Program 1 0.1 1
Program 2 10 1
Average 5.05 1

The first calculation tells us: A is 5.05x better than B
The second calculation tells us: B is 5.05x better than A
Don’t use arithmetic mean on ratios!

Jaynaryan T Tudu Performance Modeling and Measurement



33/36

Summerising the Performance: Geometric Mean

Use geometric mean for ratios

Geometric mean:

n
√∏n

i=1 ratioi

In the Example: GM of Machine A is 1, and GM of Machine
B is also 1

A is as good as B

Corollary: GM of ratios is not proportional to total time

Corollary: GM of ratios is equal to the ratio of GMs

Independent of reference machine: ratio of GM is equal to the
geometric mean of the performance ratios.

Jaynaryan T Tudu Performance Modeling and Measurement



34/36

Example on use of Ratio and Geometric mean

Figure : The ratio of AMD and Intel coputer with reference to Sun Ultra

Jaynaryan T Tudu Performance Modeling and Measurement



35/36

Summary: AM, GM, and HM

Use AM for times

Use HM if forced to use rates

Use GM if forced to use ratios

Jaynaryan T Tudu Performance Modeling and Measurement



36/36

Reading Meterials

John L Henessy and D Patternson, Computer Architecture: A
Quantitative Approach, 5th Edition, pp. 36-58 (Chapter 1).

J.E. Smith, Characterizing Computer Performance with a
Single Number, CACM Volume 31, Issue 10 (October 1988),
pp.1202-1206.

Jaynaryan T Tudu Performance Modeling and Measurement


