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Architecture Research
● Concept & Potential of Simultaneous Multithreading: 

                         (ISCA ’95 & ISCA 25th Anniversary Anthology)

● Designing the microarchitecture: ISCA ’96
● straightforward extension of out-of-order superscalars

● I-fetch thread chooser: ISCA ’96

● 40% faster than round-robin
● Software-directed register deallocation: TPDS ’99

● large register-file performance vs. small register file

● Mini-threads: HPCA ’03
● large SMT performance vs. small SMTs

● SMT instruction speculation: TOCS ‘03
● a good thread mix is the most important performance factor



Design Challenges in SMT

• Impact of fine-grained scheduling on single thread 

performance? (Since SMT makes sense only with fine-grained implementation) 

• Larger register file is required to hold multiple contexts

• Challenge in not affecting the clock cycle time, especially in 

– Instruction issue - more candidate instructions need to be 

considered

– Instruction completion - choosing which instructions to 

commit may be challenging

• Ensuring that cache and TLB conflicts generated by SMT does 

not degrade performance

[Managing large pool of threads is the challenge!]



Implementation of CGMT
A simple pipeline architecture without multi-threading support

How to make it multi-threaded (4 threads coarse-grained)?

32 32-bit GPRs
32 co-processor zero CP0 registers for OS related work
3 special registers: PC, Hi and Lo



Implementation of CGMT
How to make it multi-threaded (4 threads coarse-grained)?

Replicate GPR0 to GPR31: GPR0 to GPR31 for T0, GPR0 – GPR31 for T1….. 
Replicate Hi, Lo and PC: 
                In case of PC, PC0 – PC3 would get access via active PC.

Thread ID register: A new 2 bit register to store Hardware Thread ID (HTID)

Need additional registers for context switch: 
                                             Valid Vector (VV) and Waiting vector(WV)
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Implementation of CGMT

Thread ID register: A new 2 bit register to store Hardware Thread ID (HTID)

Need additional registers for context switch: 
                                             Valid Vector (VV) and Waiting vector(WV)

        HTID   

 0  0   → Thread 0
 0  1   → Thread 1
 1  0   → Thread 2
 1  1   → Thread 3

0 1 1 0

0 1 0 0

V V
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The Operation of CGMT

Execution map of of two threads with context switching.
Five stage pipeline with CGMT
The reason for context switch is Cache miss 



Implementation of FGMT
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Implementation of FGMT

Instruction are fetched from each PC and TID will be appended to it. 
The register file is expanded to accommodated all the threads. 



Basic Out-of-order Pipeline



SMT Pipeline



Implementing SMT

Can use as is most hardware on current out-or-order processors

Out-of-order renaming & instruction scheduling mechanisms

• physical register pool model
• renaming hardware eliminates false dependences both within a 

thread (just like a superscalar) & between threads
• map thread-specific architectural registers onto a pool of thread-

independent physical registers
• operands are thereafter called by their physical names
• an instruction is issued when its operands become available & a 

functional unit is free
• instruction scheduler need not consider thread IDs when 

dispatching instructions to functional units
(unless threads have different priorities)



SMT Performance

Tullsen ‘96



From Superscalar to SMT
Per-thread hardware

• small stuff
• all part of current out-of-order processors
• none endangers the cycle time
• other per-thread processor state, e.g.,

• program counters
• return stacks
• thread identifiers, e.g., with BTB entries, TLB entries

• per-thread bookkeeping for
• instruction retirement
• instruction queue flush 

This is why there is only a 10% increase to Alpha 21464 chip area.



Implementing SMT
Thread-shared hardware:

• fetch buffers
• branch prediction structures
• instruction queues
• functional units
• active list
• all caches & TLBs
• MSHRs
• store buffers

This is why there is little single-thread performance

degradation (~1.5%).



Design Challenges in SMT- Fetch

• Most expensive resources
– Cache port
– Limited to accessing the contiguous memory locations
– Less likely that multiple thread from contiguous or 

even spatially local addresses

• Either provide dedicated fetch stage per thread
• Or time share a single port in fine grain or 

coarse grain manner
• Cost of dual porting cache is quite high 

– Time sharing is feasible solution



Design Challenges in SMT- Fetch

• Other expensive resource is Branch Predictor
– Multi-porting branch predictor is equivalent to halving 

its effective size
– Time sharing makes more sense

• Certain element of BP rely on serial semantics 
and may not perform well for multi-thread
– Return address stack  rely on FIFO behaviour
– Global BHR may not perform well
– BHR needs to be replicated



Inter-thread Cache Interference

• Because they share the cache, so more threads, 
lower hit-rate. (spatial locality gets affected).

• Two reasons why this is not a significant 
problem:
1. The L1 Cache miss can almost be entirely covered 

by the 4-way set associative L2 cache.

2. Out-of-order execution, write buffering and the use 
of multiple threads allow SMT to hide the small 
increases of additional memory latency. 

0.1% speed up without interthread cache miss. 



Increase in Memory Requirement

• More threads are used, more memory 

references per cycle.

• Bank conflicts in L1 cache account for the most 

part of the memory accesses. 

• It is avoidable:

1. For longer cache line: gains due to better spatial 

locality out-weighted the costs of L1 bank 

contention

2. 3.4% speedup if no interthread contentions. 



Fetch Policies

• Basic: Round-robin: RR.2.8 fetching scheme, i.e., in each cycle, two 
times 8 instructions are fetched in round-robin policy from two different 2 
threads, 
– superior to different other schemes like RR.1.8, RR.4.2, and RR.2.4 

• Other fetch policies:
– BRCOUNT scheme gives highest priority to those threads that are 

least likely to be on a wrong path, 
– MISSCOUNT scheme gives priority to the threads that have the 

fewest outstanding D-cache misses
– IQPOSN policy gives lowest priority to the oldest instructions by 

penalizing those threads with instructions closest to the head of 
either the integer or the floating-point queue

– ICOUNT feedback technique gives highest fetch priority to the 
threads with the fewest instructions in the decode, renaming, and 
queue pipeline stages 



Fetch Policies

Dean Tullsen, 1996

Throughput comparison of Fetch Policy!

ICOUNT performs better



Fetch Policies

• The ICOUNT policy proved as superior!
• The ICOUNT.2.8 fetching strategy reached a IPC of about 5.4 

(the RR.2.8 reached about 4.2 only). 
• Most interesting is that neither mispredicted branches nor 

blocking due to cache misses, but a mix of both and perhaps 
some other effects showed as the best fetching strategy.

• Simultaneous multithreading has been evaluated with
– SPEC95,
– database workloads, 
– and multimedia workloads.  

• Both achieving roughly a 3-fold IPC  increase with an eight-
threaded SMT over a single-threaded superscalar with similar 
resources. 



Design Challenges in SMT- Decode

• Primary tasks
– Identify source operands and destination
– Resolve dependency

• Instructions from different threads are not 
dependent

• Trade-off Single thread performance



Design Challenges in SMT- Rename

• Allocate physical register
• Map AR to PR
• Makes sense to share logic which 

maintain the free list of registers
• AR numbers are disjoint across the 

threads, hence can be partitioned
– High bandwidth al low cost than multi-porting

• Limits the single thread performance



Design Challenges in SMT- Issue

• Tomasulo’s algorithm
• Wakeup and select
• Clearly improve the performance 
• Selection

– Dependent on the instruction from multiple threads

• Wakeup
– Limited to intra-thread interaction
– Make sense to partition the issue window

• Limit the performance of single thread 



Design Challenges in SMT- Execute

• Clearly improve the performance
• Bypass network
• Memory

– Separate LS queue



Multi-threading Processors

• Intel Hyperthreding (HT)
– Dual threads
– Pentium 4, XEON

• Sun CoolThreads 
– UltraSPARC T1
– 4-threads per core

• IBM
– POWER5



IBM POWER4

Single-threaded predecessor to 
POWER5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.
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2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)

POWER5

IBM POWER5



POWER5 Data Flow

Why only 2 threads? With 4, one of the shared 
resources (physical registers, cache, memory 
bandwidth) would be prone to bottleneck 



Changes in  POWER5 to Support SMT

• Increased associativity of L1 instruction cache and the 
instruction address translation buffers 

• Added per thread load and store queues 
• Increased size of the L2  and L3 caches
• Added separate instruction prefetch and buffering per 

thread
• Increased the number of virtual registers from 152 to 240
• Increased the size of several issue queues
• The POWER5 core is about 24% larger than the POWER4 

core because of the addition of SMT support



IBM Power5

http://www.research.ibm.com/journal/rd/494/mathis.pdf



Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

• Logical processors share nearly all resources of the 
physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading  ~ 5%
• When one logical processor is stalled, the other can make 

progress
– No logical processor can use all entries in queues when 

two threads are active
• Processor running only one active software thread runs at 

approximately same speed with or without hyperthreading



Pentium-4 Hyperthreading

[ Intel Technology Journal, Q1 2002 ]

Resource divided 
between logical CPUs

Resource shared 
between logical CPUs

Front End



Pentium-4 Hyperthreading

[ Intel Technology Journal, Q1 2002 ]

Execution Pipeline



Initial Performance of SMT
• P4 Extreme Edition SMT yields 1.01 speedup for SPECint_rate 

benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run 

against a vendor-selected number of copies of the same 
benchmark

• Running on P4 each of 26 SPEC benchmarks paired with every 
other (262 runs) speed-ups from 0.90 to 1.58; average was 1.20

• POWER5, 8 processor server 1.23 faster for SPECint_rate with 
SMT, 1.16 faster for SPECfp_rate

• POWER5 running 2 copies of each app speedup between 0.89 
and 1.41
– Most gained some
– FP apps had most cache conflicts and least gains
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Processor Micro architecture Fetch / 
Issue / 

Execute

FU Clock 
Rate 
(GHz)

Transis-tors 
Die size

Power

Intel Pentium 
4 Extreme

Speculative 
dynamically 

scheduled; deeply 
pipelined; SMT 

 3/3/4 7 int. 
1 FP

3.8 125 M    
122 mm2

115 W

AMD Athlon 
64 FX-57

Speculative 
dynamically 
scheduled

3/3/4 6 int. 
3 FP

2.8 114 M 
115 mm2

104 W

IBM POWER5 

(1 CPU only)

Speculative 
dynamically 

scheduled; SMT; 
2 CPU cores/chip

8/4/8 6 int. 
2 FP

1.9 200 M 
300 mm2 

(est.)

80W 
(est.)

Intel Itanium 
2

Statically 
scheduled 
VLIW-style

6/5/11 9 int. 
2 FP

1.6 592 M 
423 mm2

130 W

Head to Head ILP competition



Performance on SPECint2000



No Silver Bullet for ILP 

• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance followed by 

the P4, Itanium 2, and POWER5
• Itanium 2 and POWER5, which perform similarly on SPECFP, 

clearly dominate the Athlon and P4 on SPECFP
• Itanium 2 is the most inefficient processor both for FP and 

integer code for all but one efficiency measure 
(SPECFP/Watt)

• Athlon and P4 both make good use of transistors and area in 
terms of efficiency

• IBM POWER5 is the most effective user of energy on SPECfp 
and essentially tied on SPECint



Limits to ILP

• Doubling issue rates above today’s 3-6 instructions per 
clock, say to 6 to 12 instructions, probably requires a 
processor to 
– issue 3 or 4 data memory accesses per cycle, 
– resolve 2 or 3 branches per cycle, 
– rename and access more than 20 registers per cycle, and 
– fetch 12 to 24 instructions per cycle. 

• The complexities of implementing these capabilities is likely 
to mean sacrifices in the maximum clock rate 
– E.g,  widest issue processor is the Itanium 2, but it also 

has the slowest clock rate, despite the fact that it 
consumes the most power!



Limits to ILP

• Most techniques for increasing performance increase power 
consumption 

• The key question is whether a technique is energy efficient: 
does it increase power consumption faster than it increases 
performance? 

• Multiple issue processors techniques all are energy inefficient:

1. Issuing multiple instructions incurs some overhead in logic 
that grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained 
performance

• Number of transistors switching = f(peak issue rate), and 
performance = f( sustained rate), 
growing gap between peak and sustained performance 
increasing energy per unit of performance



Next Lecture
                 Multi-core/Multi-processor
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