
SMT:
Simultaneous Multi-threading

jtt@iittp.ac.in
April, 2020

Computer System Architecture

IIT Tirupati

mailto:jtt@iittp.ac.in

Multi-threaded Exec Model

Superscalar Fine-Grained

Coarse-Grained
Multiprocessing SMT

Thread 1

Thread 2
Thread 3
Thread 4

Thread 5
Idle slot

T
I
M
E

Architecture Research
● Concept & Potential of Simultaneous Multithreading:

 (ISCA ’95 & ISCA 25th Anniversary Anthology)

● Designing the microarchitecture: ISCA ’96
● straightforward extension of out-of-order superscalars

● I-fetch thread chooser: ISCA ’96

● 40% faster than round-robin
● Software-directed register deallocation: TPDS ’99

● large register-file performance vs. small register file

● Mini-threads: HPCA ’03
● large SMT performance vs. small SMTs

● SMT instruction speculation: TOCS ‘03
● a good thread mix is the most important performance factor

Design Challenges in SMT

• Impact of fine-grained scheduling on single thread

performance? (Since SMT makes sense only with fine-grained implementation)

• Larger register file is required to hold multiple contexts

• Challenge in not affecting the clock cycle time, especially in

– Instruction issue - more candidate instructions need to be

considered

– Instruction completion - choosing which instructions to

commit may be challenging

• Ensuring that cache and TLB conflicts generated by SMT does

not degrade performance

[Managing large pool of threads is the challenge!]

Implementation of CGMT
A simple pipeline architecture without multi-threading support

How to make it multi-threaded (4 threads coarse-grained)?

32 32-bit GPRs
32 co-processor zero CP0 registers for OS related work
3 special registers: PC, Hi and Lo

Implementation of CGMT
How to make it multi-threaded (4 threads coarse-grained)?

Replicate GPR0 to GPR31: GPR0 to GPR31 for T0, GPR0 – GPR31 for T1…..
Replicate Hi, Lo and PC:
 In case of PC, PC0 – PC3 would get access via active PC.

Thread ID register: A new 2 bit register to store Hardware Thread ID (HTID)

Need additional registers for context switch:
 Valid Vector (VV) and Waiting vector(WV)

Implementation of CGMT
Replicate GPR0 to GPR31:

Replicate Hi, Lo and PC:
 In case of PC, PC0 – PC3 would get access via active PC.

Thread ID register: A new 2 bit register to store Hardware Thread ID (HTID)

Need additional registers for context switch:
 Valid Vector (VV) and Waiting vector(WV)

To ALU

GPR of T0
GPR of T1

GPR of T2

GPR
of T3

PC1PC0 PC2 PC3

PC

Implementation of CGMT

Thread ID register: A new 2 bit register to store Hardware Thread ID (HTID)

Need additional registers for context switch:
 Valid Vector (VV) and Waiting vector(WV)

 HTID

 0 0 → Thread 0
 0 1 → Thread 1
 1 0 → Thread 2
 1 1 → Thread 3

0 1 1 0

0 1 0 0

V V

W V

The Operation of CGMT

Execution map of of two threads with context switching.
Five stage pipeline with CGMT
The reason for context switch is Cache miss

Implementation of FGMT

CGMT

FGMT

Implementation of FGMT

Instruction are fetched from each PC and TID will be appended to it.
The register file is expanded to accommodated all the threads.

Basic Out-of-order Pipeline

SMT Pipeline

Implementing SMT

Can use as is most hardware on current out-or-order processors

Out-of-order renaming & instruction scheduling mechanisms

• physical register pool model
• renaming hardware eliminates false dependences both within a

thread (just like a superscalar) & between threads
• map thread-specific architectural registers onto a pool of thread-

independent physical registers
• operands are thereafter called by their physical names
• an instruction is issued when its operands become available & a

functional unit is free
• instruction scheduler need not consider thread IDs when

dispatching instructions to functional units
(unless threads have different priorities)

SMT Performance

Tullsen ‘96

From Superscalar to SMT
Per-thread hardware

• small stuff
• all part of current out-of-order processors
• none endangers the cycle time
• other per-thread processor state, e.g.,

• program counters
• return stacks
• thread identifiers, e.g., with BTB entries, TLB entries

• per-thread bookkeeping for
• instruction retirement
• instruction queue flush

This is why there is only a 10% increase to Alpha 21464 chip area.

Implementing SMT
Thread-shared hardware:

• fetch buffers
• branch prediction structures
• instruction queues
• functional units
• active list
• all caches & TLBs
• MSHRs
• store buffers

This is why there is little single-thread performance

degradation (~1.5%).

Design Challenges in SMT- Fetch

• Most expensive resources
– Cache port
– Limited to accessing the contiguous memory locations
– Less likely that multiple thread from contiguous or

even spatially local addresses

• Either provide dedicated fetch stage per thread
• Or time share a single port in fine grain or

coarse grain manner
• Cost of dual porting cache is quite high

– Time sharing is feasible solution

Design Challenges in SMT- Fetch

• Other expensive resource is Branch Predictor
– Multi-porting branch predictor is equivalent to halving

its effective size
– Time sharing makes more sense

• Certain element of BP rely on serial semantics
and may not perform well for multi-thread
– Return address stack rely on FIFO behaviour
– Global BHR may not perform well
– BHR needs to be replicated

Inter-thread Cache Interference

• Because they share the cache, so more threads,
lower hit-rate. (spatial locality gets affected).

• Two reasons why this is not a significant
problem:
1. The L1 Cache miss can almost be entirely covered

by the 4-way set associative L2 cache.

2. Out-of-order execution, write buffering and the use
of multiple threads allow SMT to hide the small
increases of additional memory latency.

0.1% speed up without interthread cache miss.

Increase in Memory Requirement

• More threads are used, more memory

references per cycle.

• Bank conflicts in L1 cache account for the most

part of the memory accesses.

• It is avoidable:

1. For longer cache line: gains due to better spatial

locality out-weighted the costs of L1 bank

contention

2. 3.4% speedup if no interthread contentions.

Fetch Policies

• Basic: Round-robin: RR.2.8 fetching scheme, i.e., in each cycle, two
times 8 instructions are fetched in round-robin policy from two different 2
threads,
– superior to different other schemes like RR.1.8, RR.4.2, and RR.2.4

• Other fetch policies:
– BRCOUNT scheme gives highest priority to those threads that are

least likely to be on a wrong path,
– MISSCOUNT scheme gives priority to the threads that have the

fewest outstanding D-cache misses
– IQPOSN policy gives lowest priority to the oldest instructions by

penalizing those threads with instructions closest to the head of
either the integer or the floating-point queue

– ICOUNT feedback technique gives highest fetch priority to the
threads with the fewest instructions in the decode, renaming, and
queue pipeline stages

Fetch Policies

Dean Tullsen, 1996

Throughput comparison of Fetch Policy!

ICOUNT performs better

Fetch Policies

• The ICOUNT policy proved as superior!
• The ICOUNT.2.8 fetching strategy reached a IPC of about 5.4

(the RR.2.8 reached about 4.2 only).
• Most interesting is that neither mispredicted branches nor

blocking due to cache misses, but a mix of both and perhaps
some other effects showed as the best fetching strategy.

• Simultaneous multithreading has been evaluated with
– SPEC95,
– database workloads,
– and multimedia workloads.

• Both achieving roughly a 3-fold IPC increase with an eight-
threaded SMT over a single-threaded superscalar with similar
resources.

Design Challenges in SMT- Decode

• Primary tasks
– Identify source operands and destination
– Resolve dependency

• Instructions from different threads are not
dependent

• Trade-off Single thread performance

Design Challenges in SMT- Rename

• Allocate physical register
• Map AR to PR
• Makes sense to share logic which

maintain the free list of registers
• AR numbers are disjoint across the

threads, hence can be partitioned
– High bandwidth al low cost than multi-porting

• Limits the single thread performance

Design Challenges in SMT- Issue

• Tomasulo’s algorithm
• Wakeup and select
• Clearly improve the performance
• Selection

– Dependent on the instruction from multiple threads

• Wakeup
– Limited to intra-thread interaction
– Make sense to partition the issue window

• Limit the performance of single thread

Design Challenges in SMT- Execute

• Clearly improve the performance
• Bypass network
• Memory

– Separate LS queue

Multi-threading Processors

• Intel Hyperthreding (HT)
– Dual threads
– Pentium 4, XEON

• Sun CoolThreads
– UltraSPARC T1
– 4-threads per core

• IBM
– POWER5

IBM POWER4

Single-threaded predecessor to
POWER5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

05 Oct 2015 CS-683@IITB 31

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

POWER5

IBM POWER5

POWER5 Data Flow

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

Changes in POWER5 to Support SMT

• Increased associativity of L1 instruction cache and the
instruction address translation buffers

• Added per thread load and store queues
• Increased size of the L2 and L3 caches
• Added separate instruction prefetch and buffering per

thread
• Increased the number of virtual registers from 152 to 240
• Increased the size of several issue queues
• The POWER5 core is about 24% larger than the POWER4

core because of the addition of SMT support

IBM Power5

http://www.research.ibm.com/journal/rd/494/mathis.pdf

Pentium-4 Hyperthreading (2002)

• First commercial SMT design (2-way SMT)
– Hyperthreading == SMT

• Logical processors share nearly all resources of the
physical processor
– Caches, execution units, branch predictors

• Die area overhead of hyperthreading ~ 5%
• When one logical processor is stalled, the other can make

progress
– No logical processor can use all entries in queues when

two threads are active
• Processor running only one active software thread runs at

approximately same speed with or without hyperthreading

Pentium-4 Hyperthreading

[Intel Technology Journal, Q1 2002]

Resource divided
between logical CPUs

Resource shared
between logical CPUs

Front End

Pentium-4 Hyperthreading

[Intel Technology Journal, Q1 2002]

Execution Pipeline

Initial Performance of SMT
• P4 Extreme Edition SMT yields 1.01 speedup for SPECint_rate

benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run

against a vendor-selected number of copies of the same
benchmark

• Running on P4 each of 26 SPEC benchmarks paired with every
other (262 runs) speed-ups from 0.90 to 1.58; average was 1.20

• POWER5, 8 processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

• POWER5 running 2 copies of each app speedup between 0.89
and 1.41
– Most gained some
– FP apps had most cache conflicts and least gains

Initial Performance of SMT

• P4 Extreme Edition SMT yields 1.01 speedup for SPECint_rate
benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run

against a vendor-selected number of copies of the same
benchmark

• Running on P4 each of 26 SPEC benchmarks paired with every
other (262 runs) speed-ups from 0.90 to 1.58; average was 1.20

• POWER5, 8 processor server 1.23 faster for SPECint_rate with
SMT, 1.16 faster for SPECfp_rate

• POWER5 running 2 copies of each app speedup between 0.89
and 1.41
– Most gained some
– FP apps had most cache conflicts and least gains

Processor Micro architecture Fetch /
Issue /

Execute

FU Clock
Rate
(GHz)

Transis-tors
Die size

Power

Intel Pentium
4 Extreme

Speculative
dynamically

scheduled; deeply
pipelined; SMT

 3/3/4 7 int.
1 FP

3.8 125 M
122 mm2

115 W

AMD Athlon
64 FX-57

Speculative
dynamically
scheduled

3/3/4 6 int.
3 FP

2.8 114 M
115 mm2

104 W

IBM POWER5

(1 CPU only)

Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

8/4/8 6 int.
2 FP

1.9 200 M
300 mm2

(est.)

80W
(est.)

Intel Itanium
2

Statically
scheduled
VLIW-style

6/5/11 9 int.
2 FP

1.6 592 M
423 mm2

130 W

Head to Head ILP competition

Performance on SPECint2000

No Silver Bullet for ILP

• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance followed by

the P4, Itanium 2, and POWER5
• Itanium 2 and POWER5, which perform similarly on SPECFP,

clearly dominate the Athlon and P4 on SPECFP
• Itanium 2 is the most inefficient processor both for FP and

integer code for all but one efficiency measure
(SPECFP/Watt)

• Athlon and P4 both make good use of transistors and area in
terms of efficiency

• IBM POWER5 is the most effective user of energy on SPECfp
and essentially tied on SPECint

Limits to ILP

• Doubling issue rates above today’s 3-6 instructions per
clock, say to 6 to 12 instructions, probably requires a
processor to
– issue 3 or 4 data memory accesses per cycle,
– resolve 2 or 3 branches per cycle,
– rename and access more than 20 registers per cycle, and
– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these capabilities is likely
to mean sacrifices in the maximum clock rate
– E.g, widest issue processor is the Itanium 2, but it also

has the slowest clock rate, despite the fact that it
consumes the most power!

Limits to ILP

• Most techniques for increasing performance increase power
consumption

• The key question is whether a technique is energy efficient:
does it increase power consumption faster than it increases
performance?

• Multiple issue processors techniques all are energy inefficient:

1. Issuing multiple instructions incurs some overhead in logic
that grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained
performance

• Number of transistors switching = f(peak issue rate), and
performance = f(sustained rate),
growing gap between peak and sustained performance
increasing energy per unit of performance

Next Lecture
 Multi-core/Multi-processor

	Slide 1
	Multithreaded Categories
	Architecture Research
	Design Challenges in SMT
	Basic Out-of-order Pipeline
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	SMT Pipeline
	Implementing SMT
	SMT Performance Tullsen ‘96
	From Superscalar to SMT
	Implementing SMT
	Design Challenges in SMT- Fetch
	Design Challenges in SMT- Fetch
	Inter-thread Cache Interference
	Increase in Memory Requirement
	Fetch Policies
	Fetch Policy
	Fetch Policies
	Design Challenges in SMT- Decode
	Design Challenges in SMT- Rename
	Design Challenges in SMT- Issue
	Design Challenges in SMT- Execute
	Commercial Machines w/ MT Support
	IBM POWER4
	Slide 31
	POWER5 data flow ...
	Changes in POWER5 to support SMT
	Slide 34
	Pentium-4 Hyperthreading (2002)
	Pentium-4 Hyperthreading Front End
	Pentium-4 Hyperthreading Execution Pipeline
	Initial Performance of SMT
	Initial Performance of SMT
	Slide 40
	Performance on SPECint2000
	No Silver Bullet for ILP
	Limits to ILP
	Limits to ILP
	Thank You

