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Instruction Level Parallelism

® Simple pipeline:
Temporal parallelism among instructions

® Super scalar pipeline:
Spatial parallelism with out-of-order execution

How to enhance performance of the super-scalar?

Would it be wise to increase the fetch and issue width to enhance the
performance?
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For an 8-way
superscalar.

Processor busy
indicate useful,

rest are waste

Only 25% of
Issue
cycle are useful!

WHY?

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: Maximizing On-
chip Parallelism, ISCA 1995.



Limits to ILP

® Static ILP (Compiler based):

- Limited by unavailability of runtime data
® Dynamic ILP (Hardware based):

- Hardware cost

- Energy consumption

® Do we need to invent new HW/SW mechanisms to

keep on processor performance curve?
- Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
- Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
= Motorola AltaVec: 128 bit ints and FPs
= Supersparc Multimedia ops, etc.



Limits to ILP: The lIdeal Processor

Assumptions for ideal/perfect super-scalar processor:

1. Register renaming — infinite virtual/rename registers,
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions, => no flush

3. Jump prediction — all jJumps perfectly predicted (returns, case
statements)
2 & 3 implies no control dependencies; perfect speculation & an
unbounded buffer of instructions available

4. Memory-address alias analysis — addresses known & aload can
be moved before a store provided addresses not equal; 1&4
eliminates all but RAW dependencies.

5. Perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
Instructions issued/clock cycle;



Limits to ILP: HW Model comparison

Ideal Processor |IBM Power 5
Instructions Issued Infinite 4
per clock
Instruction Window Infinite 200
Size
Renaming Registers | Infinite 48 integer +
40 FI. Pt.
Branch Prediction Perfect 2% to 6%
(100% accuracy) misprediction
(Tournament Branch
Predictor)
Cache Perfect (no miss) 64KI, 32KD, 1.92MB
L2, 36 MB L3
Memory Alias Perfect ?7?
Analysis




Upper Limit to ILP: Ideal Machine

Instructions Per Clock
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Beyond Single Thread ILP

We need more independent instructions
from SOmewhere?

Message / Service
System (Broker)

There are many Query / Response Query / Response
applications:
- Data base applications

Query 4 Response

- Scientific computation Database Agent |  ..Y.. Database Agent
- Graphics, media etc (JDBC to PostgreSQL) (JDBC to PostgreSQL)

P 3 P 3

Thread ..| Thread |  «-..e. Thread ..| Thread
Threads 4 4
are Inherently parallel!

bbbbbb

DB Host Server DB Host Server




Thread Level Parallelism

Can we build a hardware where instructions from
multiple threads can be executed together?

Basic
understanding
on:

Program
Process
Thread

stack | »

 Heap

Data

Text
Code

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5




Thread Level Parallelism

What does it mean for hardware design?

- A separate register files for each thread!

- A separate program counter for each thread!

- Memory has to be shared!

- Hardware should be able to switch among multiple threads
- How to identify each thread?

- What about execution units?
No duplication but shared among the threads!

- The operating system needs to be multi-programming (multi-threading)



Thread Level Parallelism

What does it mean for hardware design?
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Thread Level Parallelism

Different type of Multi-threading Architecture

What are the ways to execute instructions from different
threads?

Cycle 1 Instruction from thread 1
Cycle 2 Instruction from thread 2
Cycle 3 Instruction from thread 3 Switching among the
threads
Cycle 4 Every cycle!
Cycle 5
Cyclen | Instruction from thread m

Fine-grained multi-threading (FMT)



Thread Level Parallelism

Different type of Multi-threading Architecture

What are the ways to execute instructions from different
threads?

Cycle 1 Instruction from thread 1 Switching among the threads
Cvele 2 Instruction from thread 1 Only when a major stalls takes
yele . place
Cycle 3 Instruction from thread 1
Cycle 4 » Stall due to cache miss!
_ Sufficiently large cycles = 100s

- Instruction from thread 2

Cycle What are the other

Instruction from thread 2
Cycle n Instruction from thread m sources
of stall latency?

Coarse-grained multi-threading (CMT)



Thread Level Parallelism

Simultaneous Multi-threading

= fine-grained multi-threading + super scalar

Cycle 1 Instruction from thread 1Instruction from thread 2

Cycle 2 Instruction from thread 3Instruction from thread 2

Cycle 3

Cycle 4 Fetches instructions from
Cycle 5 different thread.

Cycle n Instruction from thread m

v

Simultaneous multi-threading (SMT)



Thread Level Parallelism

Simultaneous Multi-threading in Super-scalar

- Super-scalar with no multi-threading support
- Super-scalar with coarse-grained multi-threading
- Super-scalar with fine-grained multi-threading

- Super-scalar with simultaneous multi-threading



Thread Level Parallelism:

Execution Model

Execution Units
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Thread Level Parallelism:

Execution Model

Execution Units Execution U cution Units Execution Units
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Multithreading: Performance

6 /
]
—Simultaneous
U 4 Multithreading
=%
3 Fine-Grain Multithreading
2
Single-threaded Superscalar
1
L]

1 2 3 4 5 ] 7 a
Numberof Threads

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of the International
Symposium on Computer Architecture, June, 1995



Multithreading Execution Model

How to decide which model would
give better performance?

Execution Units
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Next Lecture
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