Beyond ILP
Multi-threading

Computer System Architecture
lIT Tirupati

April, 2020
jtt@iittp.ac.in

Instruction Level Parallelism

® Simple pipeline:
Temporal parallelism among instructions

® Super scalar pipeline:
Spatial parallelism with out-of-order execution

How to enhance performance of the super-scalar?

Would it be wise to increase the fetch and issue width to enhance the
performance?

Lo

Q0

Bo

il

40

Percent of Total Issue Cycles

20

LG

0

Inefficiency In Super-scalar

RN, |

alvinn

eqniott
CHITSS0

A
A B
.

A NN |

WY,

[

% i

1 o

AT
A 1F
A BTk
2l
4 E
2]
S 1E
A 1E
2]
A1
A1k
N
A1k
INE:
N
-
.h.H_-
1 I
[,
.
'
on
i
=

ora
su200r

Lo
=
o

=

hydr2d

Applications

SWm

Lomcaty

B O |

E memory conflict

E long Ip

short {p

long integer
E short integer
load delays

I:I control hazards
branch misprediction
E deache miss
I]II icache miss
m dilb rmiss

D itlb miss

. processor busy

For an 8-way
superscalar.

Processor busy
indicate useful,

rest are waste

Only 25% of
Issue
cycle are useful!

WHY?

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: Maximizing On-
chip Parallelism, ISCA 1995.

Limits to ILP

® Static ILP (Compiler based):

- Limited by unavailability of runtime data
® Dynamic ILP (Hardware based):

- Hardware cost

- Energy consumption

® Do we need to invent new HW/SW mechanisms to

keep on processor performance curve?
- Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
- Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
= Motorola AltaVec: 128 bit ints and FPs
= Supersparc Multimedia ops, etc.

Limits to ILP: The lIdeal Processor

Assumptions for ideal/perfect super-scalar processor:

1. Register renaming — infinite virtual/rename registers,
=> all register WAW & WAR hazards are avoided

2. Branch prediction — perfect; no mispredictions, => no flush

3. Jump prediction — all jJumps perfectly predicted (returns, case
statements)
2 & 3 implies no control dependencies; perfect speculation & an
unbounded buffer of instructions available

4. Memory-address alias analysis — addresses known & aload can
be moved before a store provided addresses not equal; 1&4
eliminates all but RAW dependencies.

5. Perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
Instructions issued/clock cycle;

Limits to ILP: HW Model comparison

Ideal Processor |IBM Power 5
Instructions Issued Infinite 4
per clock
Instruction Window Infinite 200
Size
Renaming Registers | Infinite 48 integer +
40 FI. Pt.
Branch Prediction Perfect 2% to 6%
(100% accuracy) misprediction
(Tournament Branch
Predictor)
Cache Perfect (no miss) 64KI, 32KD, 1.92MB
L2, 36 MB L3
Memory Alias Perfect ?7?
Analysis

Upper Limit to ILP: Ideal Machine

Instructions Per Clock

160 -

N A
o o

o
o

Instruction Issues per cycle

N
o
|

o
|

(0 0]
o
|

(o))
(@)
|

N
o
|

FP: 75 -150

150.1

Integer: 18 - 60

gcc espresso li fpppp doducd tomcatv

Programs

Beyond Single Thread ILP

We need more independent instructions
from SOmewhere?

Message / Service
System (Broker)

There are many Query / Response Query / Response
applications:
- Data base applications

Query 4 Response

- Scientific computation Database Agent | ..Y.. Database Agent
- Graphics, media etc (JDBC to PostgreSQL) (JDBC to PostgreSQL)

P 3 P 3

Thread ..| Thread | «-..e. Thread ..| Thread
Threads 4 4
are Inherently parallel!

bbbbbb

DB Host Server DB Host Server

Thread Level Parallelism

Can we build a hardware where instructions from
multiple threads can be executed together?

Basic
understanding
on:

Program
Process
Thread

stack | »

 Heap

Data

Text
Code

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread Level Parallelism

What does it mean for hardware design?

- A separate register files for each thread!

- A separate program counter for each thread!

- Memory has to be shared!

- Hardware should be able to switch among multiple threads
- How to identify each thread?

- What about execution units?
No duplication but shared among the threads!

- The operating system needs to be multi-programming (multi-threading)

Thread Level Parallelism

What does it mean for hardware design?

[]]

[] E L]

2 O

— 1 2 -]
g "BCY

regs SE regs E

Bz U

7 [l

CPU (] CPU [

L] []

[]]

[] [l

L] []

(a) Conventional Processor (b) Multithreaded Processor

instruction stream

Thread Level Parallelism

Different type of Multi-threading Architecture

What are the ways to execute instructions from different
threads?

Cycle 1 Instruction from thread 1
Cycle 2 Instruction from thread 2
Cycle 3 Instruction from thread 3 Switching among the
threads
Cycle 4 Every cycle!
Cycle 5
Cyclen | Instruction from thread m

Fine-grained multi-threading (FMT)

Thread Level Parallelism

Different type of Multi-threading Architecture

What are the ways to execute instructions from different
threads?

Cycle 1 Instruction from thread 1 Switching among the threads
Cvele 2 Instruction from thread 1 Only when a major stalls takes
yele . place
Cycle 3 Instruction from thread 1
Cycle 4 » Stall due to cache miss!
_ Sufficiently large cycles = 100s

- Instruction from thread 2

Cycle What are the other

Instruction from thread 2
Cycle n Instruction from thread m sources
of stall latency?

Coarse-grained multi-threading (CMT)

Thread Level Parallelism

Simultaneous Multi-threading

= fine-grained multi-threading + super scalar

Cycle 1 Instruction from thread 1Instruction from thread 2

Cycle 2 Instruction from thread 3Instruction from thread 2

Cycle 3

Cycle 4 Fetches instructions from
Cycle 5 different thread.

Cycle n Instruction from thread m

v

Simultaneous multi-threading (SMT)

Thread Level Parallelism

Simultaneous Multi-threading in Super-scalar

- Super-scalar with no multi-threading support
- Super-scalar with coarse-grained multi-threading
- Super-scalar with fine-grained multi-threading

- Super-scalar with simultaneous multi-threading

Thread Level Parallelism:

Execution Model

Execution Units

g .. @ Core 0 Core 1
/DDDD\ .OF OE
/ 11 . "EmO OO
DDDj\ EE (=

Vertical Waste — [][][] \\ NN]
ooool B0 OO0
\ ERE[B0 OO0
- EE ==
(1] O MmO
T 00 00
T EE (=
B 00 mO

| mm E] HEBE
JOm Om

Dynamic Super-scalar _ _
Chip Multi-processor (CMP)

Thread Level Parallelism:

Execution Model

Execution Units Execution U cution Units Execution Units

Coeo .~ Corel S - - T . . § ..
:OJm ® Jm | 0N AJEE | EHEE
N | EEa [] [] HE

== & 58 |E585,|oom | oes

.

B O OO . :::

BD O OO

EE B EE ;| HEE e

Om B E[.| SEEE []

00 m OO | W u e

EE B (m | EHOCHE ol

OO0 O md [[] [] | B

B [ENR [] BB
Ul B[R ECOEER | EEOE | EEEE

Conjoined Core

Multithreading: Performance

6 /
]
—Simultaneous
U 4 Multithreading
=%
3 Fine-Grain Multithreading
2
Single-threaded Superscalar
1
L]

1 2 3 4 5] 7 a
Numberof Threads

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of the International
Symposium on Computer Architecture, June, 1995

Multithreading Execution Model

How to decide which model would
give better performance?

Execution Units

Combin HON
ombining: BE O E

HO N
SMT + mEmO0 ! CPU
CGMT O] R
HnNN
| [
CJOJEL]
CJEEL]
 |=] |m
HLON
BN
v HEHNE

awng

Off-core
CEMT
contexts

|— Ppeauyl pay cayoums oo

Next Lecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

