
Beyond ILP
 Multi-threading

Computer System Architecture
IIT Tirupati

April, 2020
jtt@iittp.ac.in

Instruction Level Parallelism

 Simple pipeline:
 Temporal parallelism among instructions

 Super scalar pipeline:
 Spatial parallelism with out-of-order execution

How to enhance performance of the super-scalar?
Would it be wise to increase the fetch and issue width to enhance the
performance?

From: Tullsen, Eggers, and Levy,
“Simultaneous Multithreading: Maximizing On-
chip Parallelism, ISCA 1995.

 For an 8-way
superscalar.

Inefficiency in Super-scalar

Processor busy
indicate useful,

rest are waste

Only 25% of
issue
cycle are useful!

WHY?

Limits to ILP
 Static ILP (Compiler based):

 - Limited by unavailability of runtime data
 Dynamic ILP (Hardware based):

 - Hardware cost
 - Energy consumption

 Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?
 Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
 Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
 Motorola AltaVec: 128 bit ints and FPs
 Supersparc Multimedia ops, etc.

Limits to ILP: The Ideal Processor
Assumptions for ideal/perfect super-scalar processor:

 1. Register renaming – infinite virtual/rename registers,
 => all register WAW & WAR hazards are avoided

 2. Branch prediction – perfect; no mispredictions, => no flush

 3. Jump prediction – all jumps perfectly predicted (returns, case
statements)

 2 & 3 implies no control dependencies; perfect speculation & an
unbounded buffer of instructions available

 4. Memory-address alias analysis – addresses known & a load can
be moved before a store provided addresses not equal; 1&4
eliminates all but RAW dependencies.

 5. Perfect caches; 1 cycle latency for all instructions (FP *,/); unlimited
instructions issued/clock cycle;

Ideal Processor IBM Power 5
Instructions Issued
per clock

Infinite 4

Instruction Window
Size

Infinite 200

Renaming Registers Infinite 48 integer +
40 Fl. Pt.

Branch Prediction Perfect
(100% accuracy)

2% to 6%
misprediction
(Tournament Branch
Predictor)

Cache Perfect (no miss) 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory Alias
Analysis

Perfect ??

Limits to ILP: HW Model comparison

Upper Limit to ILP: Ideal Machine

Integer: 18 - 60

In
st

ru
ct

io
ns

 P
er

 C
lo

ck
FP: 75 - 150

Beyond Single Thread ILP

We need more independent instructions

from somewhere?

There are many
applications:
- Data base applications
- Scientific computation
- Graphics, media etc.

Threads
are Inherently parallel!

Thread Level Parallelism

Can we build a hardware where instructions from
multiple threads can be executed together?

Basic
understanding
on:

Program
Process
Thread

stack Heap Data Text
Code

State

PC

State State State State

PC PC PC PC

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

P r o c e s s

Thread Level Parallelism

What does it mean for hardware design?

- A separate register files for each thread!
- A separate program counter for each thread!
- Memory has to be shared!
- Hardware should be able to switch among multiple threads
- How to identify each thread?

- What about execution units?
 No duplication but shared among the threads!

- The operating system needs to be multi-programming (multi-threading)

Thread Level Parallelism

What does it mean for hardware design?

Thread Level Parallelism

Different type of Multi-threading Architecture
What are the ways to execute instructions from different
threads?

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle n

Instruction from thread 1

Instruction from thread 2

Instruction from thread 3

Instruction from thread m

Switching among the
threads
Every cycle!

Fine-grained multi-threading (FMT)

Thread Level Parallelism

Different type of Multi-threading Architecture
What are the ways to execute instructions from different
threads?

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle i

Cycle n

Instruction from thread 1

Instruction from thread 2
Instruction from thread m

Coarse-grained multi-threading (CMT)

Switching among the threads
Only when a major stalls takes
place

Instruction from thread 1

Instruction from thread 1

Stall due to cache miss!
sufficiently large cycles = 100s

Instruction from thread 2
What are the other
sources
of stall latency?

Thread Level Parallelism

Simultaneous Multi-threading
 = fine-grained multi-threading + super scalar

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle n

Instruction from thread 1Instruction from thread 2

Instruction from thread 3

Instruction from thread m

Fetches instructions from
different thread.

Instruction from thread 2

Simultaneous multi-threading (SMT)

Thread Level Parallelism

Simultaneous Multi-threading in Super-scalar

- Super-scalar with no multi-threading support

- Super-scalar with coarse-grained multi-threading

- Super-scalar with fine-grained multi-threading

- Super-scalar with simultaneous multi-threading

Thread Level Parallelism:
Execution Model

Dynamic Super-scalar
Chip Multi-processor (CMP)

Conjoined Core

Thread Level Parallelism:
Execution Model

Multithreading: Performance

Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Proceedings of the International
Symposium on Computer Architecture, June, 1995

Multithreading Execution Model

How to decide which model would
give better performance?

Combining:

SMT +
CGMT

Next Lecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

