
Instruction Level Parallelism
Pipeline Hazards and LL Pipeline

Indian Institute of Technology Tirupati

Computer System Architecture (CS5202)
19th March, 2020

Jaynarayan T Tudu
[jtt@iittp.ac.in]

Pipeline Architecture

Review of the
basic pipeline
architecture

The stages are being shown with
the corresponding resources

Program Execution Scenario

DADD R1 R2 R3

DSUB R4 R1 R5

AND R6 R1 R7

OR R8 R1 R9

XOR R10 R1 R11

BEQ R1 R4 offset

XOR R1 R4 R11

NOR R10 R4 R11

JMP 100(offset)
…….
…….

Dependency
(Hazards)

Data
Resource
Control

Data Dependency

The
challenges of
data sharing
(Hazards)

Data Hazards
R A W
W A R
R A R
W A W

Data Dependency: Solutions

Data
Forwarding
/ Bypassing
/Short
circuiting

Data Hazards
R A W
W A R
R A R
W A W

More solutions will be discussed in detail during LL pipeline and superscalar!

Resource Dependency

DADD R1 R2 R3

DSUB R4 R1 R5

AND R6 R1 R7

OR R8 R1 R9

XOR R10 R1 R11

BEQ R1 R4 offset

XOR R1 R4 R11

NOR R10 R4 R11

JMP 100(offset)
…….
…….

Dependency
(Hazards)

Resource
Data
Control

Resource Dependency

DADD R1 R2 R3

DSUB R4 R1 R5

AND R6 R1 R7

OR R8 R1 R9

XOR R10 R1 R11

BEQ R1 R4 offset

XOR R1 R4 R11

NOR R10 R4 R11

JMP 100(offset)
…….
…….

The solution is in effective
deployment of additional resources!

IM and DM, additional ports to Reg etc

Control Dependency

PC = 00: DADD R1 R2 R3

PC = 04: DSUB R4 R1 R5

PC = 08: AND R6 R1 R7

PC = 16: OR R8 R1 R9

PC = 20: XOR R10 R1 R11

PC = 24: BEQ R1 R4 offset

PC = 28: XOR R1 R4 R11

PC = 32: NOR R10 R4 R11

PC = 36: JMP 100(offset)
…….

PC = 24 + offset: …….

Branch Prediction:Control Dependency

The control
hazards
(Causes the
break of normal
pipeline flow)

Predict the
control path
(branch prediction)

* Advanced branch predictors will be covered during Super-scalar architecture

Branch Prediction:Control Dependency

* Advanced branch predictors will be covered during Super-scalar architecture

This requires two things:

 - Branching decision (taken or Not taken)
 - Branch target address (effective address)

Both have been moved to ID,
Just we don’t want to wait!

MIPS implementation

Branch Prediction:Control Dependency

* Advanced branch predictors will be covered during Super-scalar architecture

This requires two things:

 - Branching decision (taken or Not taken)
 - Branch target address (effective address)

RISC-V implementation

Performance with Hazards

Hazards are causing pipeline to stall – extra cycle penalty!

In ideal pipeline: cycle per instruction = 1.

Therefore, with hazards, the cycle per instruction = 1 + stall cycles per instruction

Speed up =
CPI in unpipelined (generally multicycle)

1 + stall cycles per instruction

Speed up =
Pipeline depth

1 + stall cycles per instruction

The above equation could be expressed also as follow:

Deep Pipeline Architecture

Analyzing the Execution stage!

Speed up =
Pipeline depth

1 + stall cycles per instruction

as much as possible, this
must to be avoided.

Can this be increased?

The question is how to increase pipeline depth without increasing stall cycles?

Long Latency Pipeline

Multiple units in EX
stage

Integer Unit
Floating point/Integer multiply
FP Adder
FP/Integer Divider

How to decide on which unit or where do a deeper pipeline is
needed?

Assumption:

Each of the execution unit
is non-pipeline.

FP Pipeline Architecture

To decide which unit to be pipelined for performance gain, we
use the following specification.

Latency: number of cycles between the production and the consumption of
the results (it helps designer to decide on reducing stalls).

Initiation interval: elapsed number of cycle between issuing of two operations
of a given type
(For pipeline this would be always 1, for multi-cycle it may not be)
.

FP Pipeline Architecture
Block diagram of deeper pipeline based on the given specification.

 Integer ALU: only one stage
 FP/Integer Multiply: fully pipelined with seven stages.
 FP adder: fully pipelined with four stages.
 Floating-point division is not fully pipelined but multicycle (24 cycles).

Production

Consumption

FP Pipeline Architecture

Latency and Initiation interval for each of the pipeline units. Note that in
case of FP divider the initiation interval is 25 instead of 1.

Latency: number of cycles between production of results and the
consumption of results

Initiation interval: elapsed number of cycles between issuing of two
operations/instructions of a given type.

(= 1 - 1)

(= 2 - 1)
(= 4 - 1)

(= 7 - 1)

(= 25 - 1)

FP Pipeline Architecture: Timing

Timing of independent set of instructions.

Data is required at this stage

Results are available at this stages

Figure is from 6th edition of the text book, however, for your reading you may take 5th edition,
There are some printing bugs in 6th edition.

Progress of time (clock cycle)

FP Pipeline Architecture: Hazards

Hazards and forwarding in long latency pipeline:

Data dependency (Consumer must get the updated data)
Control (Unpredictable control path)
Structural hazards (No two stages can access a single resources at a time)

1) Because the divide unit is non-pipeline, structural hazard can occur.
 This needs to be detected and the issuing instructions need to be stalled.

2) Due to varying running time of each of the instruction, the number of register
 writes required in a cycle is more than 1.

3) WAW hazards are possible, because instruction no longer reach WB in order.
 Note that WAR hazards shall never occur since the read happens in ID stage
 and the write at WB stage.
4) Instruction can complete in different order that they were issued (issued in
order but completed in out-of-order), this may leads to imprecise exception
handling.
5) Because of longer latency of operations, the stalls due to RAW hazards will
 be more frequent.

FP Pipeline Architecture: Hazards

Hazards and forwarding in long latency pipeline:

Register Read Register Write

Non-pipeline single unit
(The new instruction can be issued only after 25 cycles)

WAW may not be
maintain due to
out-of-order

FP Pipeline Architecture: Hazards

Pipeline stalls due to data dependency hazards.

Solution: stall and forwarding

f4, f0, f2 are the floating
point registers leading to
RAW dependency.

Due to structural
hazards

RAW
dependency

RAW
dependency

FP Pipeline Architecture: Solutions

Solutions to hazards.

Two data dependency hazards: RAW and WAW are of
interest
And the structural hazards.

Structural hazards

WAW
Situation for WAW to cause issue: if fld f2, 0(x2) would have been issued
 a cycle before. fld f2, 0(x2) and fadd.d f2, f4, f6 would cause WAW.

FP Pipeline Architecture: Solutions

Solutions to hazards.

Structural hazards due to WB and MEM:
 - detect hazards and stall
 - detection can be done at ID stage or at MEM stage
 - stall the issue at ID stage or stall before entering to MEM or WB

Solving the WAW hazards:
 - delay the issue of fld instruction unitl fadd.d enters to MEM stage
 - stop fadd.d to write back its result, and then issue the fld as usual.
 - WAW is very rare situation in code.

Hazards among FP and Integer units:
 - Hazards can occur among FP instructions or between FP and Integer
 instruction.
 - Having separate register file for FP and Integer unit is a good solution
 - Detection of hazards among FP
 - Check for structural hazards
 - Check for RAW hazard
 - Check for WAW hazards

Pipeline Architecture: Exception

The problem due to longer pipeline and out-of-order completion:

DIV.D F0, F2, F4
ADD.D F10, F10, F8
SUB.D F12, F12, F14 Exception or interrupts

Where should program returns after handling exception?
To DIV.D or to SUB.D.

How to maintain precise program state?

Can’t afford to lose value of any register!

Pipeline Architecture: Exception

Different situations which are Exception!

- I/O device request
- System Call (invoking OS kernel from user mode)
- Tracing instruction execution
- Break points (like gdb break)
- Integer arithmetic overflow (when a number can’t be represented)
- FP arithmetic anomaly (such as NaN)
- Divide by zero
- Page fault (OS intervention is called for)
- Misaligned memory access (you have to do memory alignment)
- Memory protection violation
- Using an undefine instruction
- Hardware malfunction
- Power failure, Reset, Restart etc.

Beyond Pipeline

Question of interest:

How to increase IPC? IPC >= 1
 or
 CPI <= 1.0

Limits of Pipeline

Processor Performance revisit:
 Performance = 1/CPU_time

 In the 1980’s (decade of pipelining):
 CPI: between 5.0 to 1.15

 In the 1990’s (decade of superscalar):
 CPI: between 1.15 to 0.5 (best case)

 In the 2000’s (decade of multicore):
 Focus on thread-level parallelism, CPI near to 0.33 (best

case)

CPU_time = time/program
 = Instruction/Program Cycle/Instruction Time/Cyclex x

Speed up = Performance of new / Performance of Old
 = CPU time in Old / CPU time in new

Limits of Pipeline

Amdhal's
Law

 h = fraction of time in serial code
 f = fraction that is vectorizable
 v = speedup for f
 Overall speedup:

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

Speedup=
1

1−f +
f
v

Speed up = P1/P2

P1: Performance for entire task using the enhancement
P2: Performance for entire task without enhancement

Limits of Pipeline

Amdhal's
Law

No. of
Processors

N

Time
1

h 1 - h

1 - f

f

 Sequential bottle neck
 Even if v is infinite, the performance is limited by non-vectorizable code
 i.e 1-f

f
v
f

f
v

 1

1

1

1
lim

Limits of Pipeline

Pipeline Performance Model:

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled (stalled)

1-g g

Pipeline
Depth

N

1

Limits of Pipeline

Pipeline Performance Model:

1-g g

Pipeline
Depth

N

1

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled (stalled)

Beyond Scalar Pipeline

Typical Range

Speedup jumps from 3 to 4.3 for
N=6, f=0.8, but s =2 instead of

s=1 (scalar)

n = pipeline stages
f = fraction of
 Vectorizable code
s = scalar size
 (for base pipeline
 s = 1)

Limits of Pipeline

Speedup(N) =
(1-f) + f/N

1 f - fraction vectorizable
N - number of processors

The challenge of

Amdhal's Law

Look at the
90%
and
95%

Limits of Pipeline

 IBM RISC Experience
 Control and data dependencies add 15%
 Best case CPI of 1.15, IPC of 0.87
 Deeper pipelines (higher frequency) magnify dependence

penalties

 This analysis assumes 100% cache hit rates
 Hit rates approach 100% for some programs
 Many important programs have much worse hit rates

Classifying ILP Machines

Baseline scalar RISC:
 Issue parallelism = IP = 1 [only one instruction]
 Operation latency = OP = 1
 Peak IPC = 1

1
2

3
4

5
6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
T

R
U

C
T

IO
N

S

- Jouppi, WRL Reserch Report 89/7, 1989

Classifying ILP Machines
Super-pipelined:

 Cycle time (minor cycle) = 1/m of baseline
 Issue parallelism = IP = 1 inst/minor cycle
 Operation latency = OP = m minor cycles
 Peak IPC = m instr / major cycle (m x speedup?)

1
2

3
4

5

IF DE EX WB
6

1 2 3 4 5 6

- Jouppi, WRL Reserch Report 89/7, 1989

Limits on Instruction Level Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

IPC achievedIdeas

Beyond Scalar Limit

 Go beyond single instruction pipeline, achieve IPC > 1
 Dispatch multiple instructions per cycle
 Provide more generally applicable form of concurrency

(not just vectors)
 Geared for sequential code that is hard to parallelize

otherwise
 Exploit fine-grained or instruction-level parallelism (ILP)

Classifying ILP Machines

Super-scalar pipeline:
 Issue parallelism = IP = n inst / cycle
 Operation latency = OP = 1 cycle
 Peak IPC = n instr / cycle (n x speedup?)

IF DE EX WB

1
2
3

4
5
6

9

7
8

- Jouppi, WRL Reserch Report 89/7, 1989

Classifying ILP Machines

VLIW: Very Long Instruction Word:
 Issue parallelism = IP = n inst / cycle
 Operation latency = OP = 1 cycle
 Peak IPC = n instr / cycle = 1 VLIW / cycle

IF DE

EX

WB

- Jouppi, WRL Reserch Report 89/7, 1989

Very Long Instruction Word
Processor

VLIW: Idea and Motivation

 To overcome the difficulty of finding parallelism
in machine-level object code.

 In a VLIW processor, multiple instructions are
packed together and issued in parallel to an
equal number of execution units.

 The compiler (not the processor) checks that
there are only independent instructions executed
in parallel.

VLIW: Very Long Instruction Word

 Multiple operations packed into one instruction
 Each operation slot is for a fixed function
 Constant operation latencies are specified
 Architecture requires guarantee of:

 Parallelism within an instruction => no x-operation RAW check
 No data use before data ready => no data interlocks

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency Two Floating-Point Units,

Four Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

VLIW Compiler Responsibilities

The compiler:

 Schedules to maximize parallel execution
 Guarantees intra-instruction parallelism
 Schedules to avoid data hazards (no interlocks)

 Typically separates operations with explicit NOPs

Early VLIW Machines

 FPS AP120B (1976)
 scientific attached array processor
 first commercial wide instruction machine
 hand-coded vector math libraries using software pipelining and

loop unrolling
 Multiflow Trace (1987)

 commercialization of ideas from Fisher’s Yale group including
“trace scheduling”

 available in configurations with 7, 14, or 28 operations/instruction
 28 operations packed into a 1024-bit instruction word

 Cydrome Cydra-5 (1987)
 7 operations encoded in 256-bit instruction word
 rotating register file

Loop Execution

for (i=0; i<N; i++)
 B[i] = A[i] + C; Int1 Int 2 M1 M2 FP+ FPx

loop:

How many FP ops/cycle?

ld add r1

fadd

sd add r2 bne

IPC = 1 fadd / 8 cycles = 0.125

loop: ld f1, 0(r1)
 add r1, 8
 fadd f2, f0, f1
 sd f2, 0(r2)
 add r2, 8
 bne r1, r3, loop

Compile

Schedule

Loop Unrolling

for (i=0; i<N; i++)
 B[i] = A[i] + C;

for (i=0; i<N; i+=4)
{
 B[i] = A[i] + C;
 B[i+1] = A[i+1] + C;
 B[i+2] = A[i+2] + C;
 B[i+3] = A[i+3] + C;
}

Unroll inner loop to perform 4
iterations at once

Need to handle values of N that are not multiples of
unrolling factor with final cleanup loop

Scheduling Loop Unrolled Code

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 sd f8, 24(r2)
 add r2, 32
 bne r1, r3, loop

Schedule

Int1 Int 2 M1 M2 FP+ FPx

loop:

Unroll 4 ways

ld f1
ld f2
ld f3
ld f4add r1 fadd f5

fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8add r2 bne

How many FLOPS/cycle? IPC= 4 fadds / 11 cycles = 0.36

Software Pipelining

loop: ld f1, 0(r1)
 ld f2, 8(r1)
 ld f3, 16(r1)
 ld f4, 24(r1)
 add r1, 32
 fadd f5, f0, f1
 fadd f6, f0, f2
 fadd f7, f0, f3
 fadd f8, f0, f4
 sd f5, 0(r2)
 sd f6, 8(r2)
 sd f7, 16(r2)
 add r2, 32
 sd f8, -8(r2)
 bne r1, r3, loop

Int1 Int 2 M1 M2 FP+ FPx
Unroll 4 ways first

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7
sd f8

add r1

add r2
bne

ld f1
ld f2
ld f3
ld f4

fadd f5
fadd f6
fadd f7
fadd f8

sd f5

add r1

loop:
iterate

prolog

epilog

How many FLOPS/cycle? 4 fadds / 4 cycles = 1

Software Pipelining vs. Loop Unrolling

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop
Iteration

Software pipelining pays startup/wind-down costs
only once per loop, not once per iteration

Next Lecture
Pipeline to continue...

Reference:

- Jouppi, WRL Reserch Report 89/7, 1989

- Appendix C: Computer Architecture Quantitative Approach, 5th Edition.
 (Pipeline: Basic and Intermediate Concepts)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

