
Instruction Level Parallelism
Pipeline Architecture

Indian Institute of Technology Tirupati

Computer System Architecture (CS5202)
19th March, 2020

Jaynarayan T Tudu
[jtt@iittp.ac.in]

Pipeline CPU

- Pipeline architecture and design

- Performance measurement

Recall (Quantitative Principles):

 - Get Advantage of Parallelism (Processor Design)
 - Principle of Locality (Memory System Design)
 - Make common case faster (Used in all aspect, Loop)
 - Amdhal’s Law (IPC improvement)

ISA Register ALU Type Year

IBM 701 1 Accumulator 1953

CDC6600 8 Load-store 1963

IBM360 18 Reg-Mem 1964

DEC PDP-8 1 Accumulator 1965

DEC PDP-11 8 Reg-Mem 1970

Intel 8008 1 Accumulator 1974

DEC VAX 16 Reg-Mem Mem-Mem 1977

Motorola 16 Reg-Mem 1980

Intel 80386 8 Reg-Mem 1985

ARM 16 Load-store 1985

MIPS 32 Load-store 1985

HP PARISC 32 Load-store 1986

SPARC 32 Load-store 1987

Power PC 32 Load-store 1992

IA-64 128 Load-store 2001

AMD64 16 Reg-Mem 2003

x86-64 16 Reg-Mem 2003

RISC-V 32 Load-store 2010

CPU Design
Objective: To execute the ISA CPU design begins from ISA

CPU Design

Single cycle CPU design: All the micro-operations of a given instruction
 need to be carried out in just one cycle.

Evolution of CPU Design:

Example: ADD R1 R2 R3 | R1 ← R2 + R3

We will design a processor that executes the above ADD instruction!

+

R1

R2
R3

ADD R1 R2 R3PC →

Control

CPU Design
Single cycle CPU design

Instructions Actual Time

ADD R10, R0, R0 2 ns
ADD R11, R8, R8 2 ns
ADDI R12, R11, 80 2 ns
Loop:
LW R13, 0(R11) 4 ns
ADD R10, R10, R13 2 ns
ADDI R11, R11, 4 2 ns
BLT R11, R12, Loop 2 ns

Imagine a processor for large ISA!

ADD x1
0, x

0, x
0

ADD x1
1,

 x
8,

 x8

ADDI x
12

, x
11

, 8
0

LW
 x

13
, 0

(x
11

)
4 ns

Total time to execute the program:

= instruction count x cycle time
= 7 x 4 = 28 ns

Where cycle time is determined by the
maximum time of any instruction.

CPU Design
Single cycle CPU design:

Important points to note with respect to single cycle design:

 1) Each instruction take only one cycle to complete execution.
 2) Every instruction has to be go through the five important phases:
 - Fetch the instruction from memory
 - Decode the instruction to identify the the operands and
 generate control signal
 - Fetch the necessary operand either from Registers, immediate, or
 data memory according to the addressing mode.
 - Perform the necessary operation such as ALU, Load, Store, Branching etc.
 -Write the results back to register or data memory

 3) All these micro-operations are to be performed in just one cycle.
 4) Since the single cycle processor uses only one clock of fixed period, it implies
 that all the instruction would require same cycle time.
 5) One things to observe for a processor is: it has two different set of paths:
 - control path
 - data path
 (in the later designs these paths will be isolated systematically to create multi-cycle and pipeline)

CPU Design
Multi-cycle CPU design:

The first question we ask is what is the problem with single cycle design?

We need to think in terms of performance gain and loss!
We also need to think in terms of hardware area overhead!
We also need to think in terms power consumption!

Instructions Actual Time

ADD R10, R0, R0 2 ns
ADD R11, R8, R8 2 ns
ADDI R12, R11, 80 2 ns
Loop:
LW R13, 0(R11) 4 ns
ADD R10, R10, x13 2 ns
ADDI R11, R11, 4 2 ns
BLT R11, R12, Loop 2 ns

- What if we design a processor with
 clock cycle time of 2 ns?

- LW would take two cycles to complete
- Rest all instruction would take one
 cycle

CPU Design
Multi-cycle CPU design:

4 ns

2 ns 2 ns

For single cycle CPU

For multi-cycle CPU

Instructions Actual Time
--
ADD R10, R0, R0 2 ns
ADD R11, R8, R8 2 ns
ADDI R12, R11, 80 2 ns
Loop:
LW R13, 0(R11) 4 ns
ADD R10, R10, R13 2 ns
ADDI R11, R11, 4 2 ns
BLT R11, R12, Loop 2 ns

CC1 CC2 CC3 CC4 CC5

 CC1
 CC2
 CC3

CC4 CC5

CPU Design
Multi-cycle CPU design:

The idea is to partition the data path and buses

+

R0

….
R15

ADD R1 R2 R3PC →

Control

LW R13, 0(R11)
Temp Reg

The path being broken by introducing Temp Reg.

CPU Design
Multi-cycle CPU design: Performance analysis

Instructions Actual Time

ADD R10, R0, R0 2 ns
ADD R11, R8, R8 2 ns
ADDI R12, R11, 80 2 ns
Loop:
LW R13, 0(R11) 4 ns
ADD R10, R10, R13 2 ns
ADDI R11, R11, 4 2 ns
BLT R11, R12, Loop 2 ns

Total execution time =

 2 + 2 + 2 + 4 + 2 + 2 + 2
 = 16 ns

Speed up = Performance of new/Performance of old

 = Time of old (single cycle) / Time of new (multi cycle)

 = 28 ns / 16 ns = 1.7 time

How did you get this performance?
At the cost of additional registers and nets

CPU Design
Multi-cycle CPU design:

Important points to note:

1 – The idea is to partition the data path in such a way that the cycle time
 would be as minimum as possible (the smallest execution time of any instruction)

2 – The design would require more hardware resources than the corresponding single
 cycle design.

3 – Each instruction would require multiple cycles to complete their execution.

4 – The multiple cycle design would support more diverse set of instruction in efficiently.
 Where as in single cycle the diverse set of instruction would lead to performance loss.

5 – If the instruction set is uniform in terms of execution time it is certainly wise to implement
 In single cycle. However, we will see next that this argument is not always true.

6 – Multi-cycle is the beginning of pipeline architecture.

7 – Partition design is one of the challenging problems since it require that each data path
 be uniform in terms of path length (or propagation time delay).

CPU Design

Single cycle CPU design

Multi-cycle CPU design

How can we do better than the multi-cycle?

Pipeline Architecture

The basic idea is:

Parallelism
This is one of the architectural principle

When you do
google search

There are many
real life example
of pipeline

Pipeline Architecture

The basic idea is: Parallelism

Instructions Actual Time

ADD R10, R0, R0 2 ns
ADD R11, R8, R8 2 ns
ADDI R12, R11, 80 2 ns
Loop:
LW R13, 0(R11) 4 ns
ADD R10, R10, R13 2 ns
ADDI R11, R11, 4 2 ns
BLT R11, R12, Loop 2 ns

From starting to end an instruction
has to travel through:

1 – Fetch from the instruction memory
2 – Decode to generate control signal
 And read operand
3 – Execute (ALU operations)
4 – Memory operations if data to be
 read from or to be written into
5 – Writing back the results from
 Stage 3

Above micro operations are necessary.How do you execute these instruction
in parallel?

Pipeline Architecture

The basic idea is: Parallelism
How do you execute these instruction parallely?

Example of very bad design:

 1 – You can have multiple single cycle processor operating in parallel
 2 – You can have multiple multi-cycle design in parallel
 3 – You can have multi-clock multiple single cycle design

The proven idea of pipeline architecture:

 The parallelism can be achieved by executing the micro operations of
 more than one instructions in parallel.
 This is one kind of instruction level parallelism (ILP)

Pipeline Architecture
The pipeline execution flow:

INS 1

INS 2

INS 3

INS 4

INS 5

INS 1

INS 2

INS 3

INS 4

INS 5

INS 1

INS 2

INS 3

INS 4

INS 5

INS 1

INS 2

INS 3

INS 4

INS 5

INS 1

INS 2

INS 3

INS 4

INS 5

CC 1
CC 2

CC 3

CC 4

CC 5

CC 6
CC 7

CC 8

CC 9

0.5 ns 0.5 ns 0.5 ns 0.5 ns 0.5 ns

CC – clock cycle, INS1 – Instruction 1;
IF – instruction fetch, ID – instruction decode, EX – instruction execution,
MEM – Memory operation (load/store), WB – write back to register

Stage delay →

Pipeline Architecture
Performance measurement:

0.5 ns 0.5 ns 0.5 ns 0.5 ns 0.5 ns

Assuming an ideal pipeline, what would be the performance improvement?

Ideal pipeline:
 - No halt in any stage at any point of time
 - All instructions get executed in free flow.

Example: n instructions, k stages, and stage delay of t ns

Total execution time = (k + (n – 1)) x t

 k is due to the fact that the first instruction requires k cycle to complete,
 remaining n – 1 instructions would be completed in followed by cycles.

Pipeline Architecture
Example Exercise:

Consider the unpipeline processor that has been discussed. Assume that it has
A 2 GHz clock (or a .5 ns clock cycle) and that it uses 4 cycles for ALU
operations and branches and five cycles for memory operations. Assume that
the relative frequencies of these operations are 40%, 20% and 40%, respectively.
suppose that due to clock skew and setup, pipelining the processor adds 0.1 ns
of overhead to the clock. Ignoring everything other latencies, how much speed
up in the instruction execution rate will be gained from pipeline?

Solution: Find out the average instruction execution time in un-pipeline
 processor, and then in pipeline processor. Then calculate the speed up.

 The clock cycle for pipeline would be 0.6 ns because 0.5 ns + 0.1 ns skew

Pipeline Architecture
Exercise on Performance Comparison:

Exercise 1:

 1) What is the performance improvement due to ideal pipeline over the
 single cycle and multi-cycle design?

 2) What is the difference between multi-cycle design and pipeline architecture?

 3) Imagine an ISA where all the instructions take exactly same time, let say t ns,
 then what would be the performance comparision of single, multi and pipeline
 processor?

Pipeline Architecture
Pipeline Processor Design:

Recall the multi-cycle design:

 - It partitioned the data path by introducing additional registers, multiplexers
 and interconnects (nets or wires).

On this design, if the control path is also partitioned, you will get a pipeline design.

Let us start from the micro-operations at each stages:

IF – instruction fetch:

 IR ← Mem[PC] where IR is isntruction register, PC is program counter
 NPC ← PC + 4 and NPC is next program counter temporary register.

Pipeline Architecture
Pipeline Processor Design:

Let us start from the micro-operations at each stages:

IF – instruction fetch:

 IR ← Mem[PC] where IR is isntruction register, PC is program counter
 NPC ← PC + 4 and NPC is next program counter temporary register.

ID – instruction decode

 A ← Regs[rs] where rs is the source 1 and source 2 register
 B ← Regs[rt] A and B are temporary registers
 Imm ← Sign extended immediate field of IR, IR is instruction register

EX – Execute the ALU instruction or computer effective address

 ALUout ← A + Imm Effective address, where Imm is immediate value in IR
 ALUout ← A func B func is the funuction fied in ALU instruction
 ALUout ← A op Imm op is operation field in immediate instruction
 ALUout ← NPC + (Imm << 2) << is the left shift, offset addressing mode

Pipeline Architecture
Pipeline Processor Design:

Let us start from the micro-operations at each stages:

MEM – Memory Access and branch complete

 PC ← NPC or
 PC ← ALUout if condition is satified for branch instruction
 LMD ← Mem[ALUout] or this is for load instruction
 Mem[ALUout] ← B this is for store instruction

WB – Write back to registers

 Reg[rs] ← ALUout for register type instructions
 Reg[rt] ← ALUout
 Reg[rt] ← LMD this is for laod instruction

Next, the processor is designed according to these operations!

Pipeline Architecture
Multi-cycle processor data path:

Pipeline Architecture
Pipeline view of the data path:

Note: The figure above does not show control path, the control signals would go to the
 select line of muxes and to the ALU control. These signals are also pipelined.

Pipeline Architecture

Exercise:

1 – Complete the pipeline design of the MIPS architecture with control signals

2 - Complete the pipeline design of RISC-V architecture with control signals

3 - Find out the hardware overhead in comparison to single cycle and multi-cycle
 design for MIPS architecture and RISC-V architecture.

4 – Calculate the exact stage delay for each stage
 Assume that mux takes 0.2 ns, registers read or write takes 0.5 ns, ALU or
 any other arithmetic operations take 0.4 ns, reading/writing to
 data instruction memory takes 1 ns.

Next Lecture
Pipeline to continue: Hazards
 Long Latency pipeline

Reference:

1 – Chapter 4, Patterson and Henessy, Computer Organisation and Design, RISC-V edition or
MIPS edition.

2 – Appendix C, Henessy and Patterson, Computer Architecture Quantitative Approach, 5th
Edition or 6th Edition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

