

Cache Memory
Advanced Optimization Techniques

Computer System Architecture (CS5202)
IIT Tirupati
 2nd March 2020

Jaynarayan t tudu
jtt@iittp.ac.in

mailto:jtt@iittp.ac.in

Last Lectures

● Memory Design
● Concept of Memory block
● Addressing a block
● Mapping between main and cache
● Four important questions
● Performance and Optimization
● Advanced Optimization Techniques

Setting the Thoughts

● Why should we or CPU worry about performance of cache memory?
● How to model and then measure performance of cache memory?
● How does the performance of cache impacts overall CPU execution time?
● Where to look at for further enhancement of performance?
● What are the additional parameters that have emerged in the recent time?

Parameters of Cache Optimization

Avg Memory access time =
Hit time + (Miss rate X Miss penalty)

As the microprocessor progress towards multi-core system the bandwidth
requirement also increases. Further, the problem of power dissipation also arises
in multi-core processor. Therefore, while designing a cache memory these two
additional parameters needs to be considered.

A cache memory must provide higher bandwidth and must dissipate as

minimum power as possible.

Bandwidth Requirements

Bandwidth demand from microprocessor:

Bandwidth Requirements

Main memory (DRAM) bandwidth capabilities:

Power Dissipation Trends

Memory power is also increasing with
clock frequency and complexity of the design.

Five Parameters to Optimize

Small and Simple L1 Cache Reduce hit time
Reduce power

Pipelined, banking, and non-blocking
cache

Increase bandwidth.
Varying impact on Power- can increase
or decrease

Critical word first and merge write
buffer

Reduce miss penalty.
Might increase power

Compiler techniques Reducing miss rate.
Reduces power.

Prefetching: Hardware and Compiler
based

Reducing miss penalty.
Increase power (if prefetched blocks
are unused.)

The Ideas Impact on Parameters

Ten Ideas

1.Small and simple first level cache to reduce hit time and power
2.Way prediction to reduce hit time
3.Pipelined access and multibanked caches to increase bandwidth
4.Non-blocking cache to increase band-width
5.Critical word first and early restart to reduce miss penalty
6.Merging write buffer to reduce miss penalty
7.Compiler optimization to reduce miss rate
8.Hardware prefetching of instructions and data to reduce miss penalty

and miss rate
9.Compiler controlled prefetching to reduce miss penalty and miss rate
10.Using high bandwidth memory (HBM) to increase bandwidth (this

will not be taught)

Small/Simple L1 Cache

Access time Vs Size and Associativity

Small/Simple L1 Cache

Energy Vs Size and Associativity

Way Prediction

 To improve hit time, predict the way to pre-set mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

Pipelined Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch mis-prediction penalty
 Makes it easier to increase associativity

Multibanked Cache

 Organize cache as independent banks to support
simultaneous access to increase bandwidth
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

Non-Blocking Caches
 Allow hits before previous misses complete

 “Hit under miss”
 “Hit under multiple miss”

 L2 must support this (DRAM access take too long)
 In general, processors can hide L1 miss penalty but

not L2 miss penalty

Critical Word First and Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

Merging Write Buffer
 When storing to a block that is already pending in the

write buffer, update write buffer
 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

No write
buffering

Write buffering

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks
 Requires more memory accesses but improves

locality of accesses

Blocking

for (i = 0; i < N; i = i + 1)
 for (j = 0; j < N; j = j + 1)
 {
 r = 0;
 for (k = 0; k < N; k = k + 1)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
};

Example from
Text Book

The problem!

Blocking

Example from
Text Book

Solution!

for (jj = 0; jj < N; jj = jj + B)
 for (kk = 0; kk < N; kk = kk + B)
 for (i = 0; i < N; i = i + 1)
 for (j = jj; j < min(jj + B,N); j = j + 1)
 {
 r = 0;
 for (k = kk; k < min(kk + B,N); k = k + 1)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j] + r;
};

Hardware Prefetching
 Fetch two blocks on miss (include next

sequential block)

Pentium 4 study

Compiler Prefetching
 Insert prefetch instructions before data is needed
 Non-faulting: prefetch doesn’t cause exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software pipelining
(Loop unrolling and software pipeline to be covered during VLIW)

Thanks

Reference:

 Chapter 2 of the Text Book.

 The content in this presentation are from the text book
 and Companion presentation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

