
Superscalar Architecture
Branch Speculation and Predictors

Computer System Architecture

IIT Tirupati

jtt@iittp.ac.in

2nd April, 2020

mailto:jtt@iittp.ac.in

Branch Speculation

• Condition resolution | Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

• Target address generation | Target Speculation
– Access register:

• PC, General purpose register, Link register
– Perform calculation:

• +/- offset, autoincrement, autodecrement

Branch Speculation

• Leading Speculation
– Typically done during the Fetch stage
– Based on potential branch instruction(s) in the current fetch

group
• Trailing Confirmation

– Typically done during the Branch Execute stage
– Based on the next Branch instruction to finish execution

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)

Branch Instruction Speculation

– Branch target prediction
– Branch direction prediction

State-transition diagram Implementation using BTB

BTAC and BHT Design

Decode Buffer

Dispatch Buffer

Decode

Reservation
Dispatch

Stations

Issue

Execute

Finish Completion

Branch

FA

Branch Target
Address Cache

 FA
-m

ux

Branch History
Table (BHT)

BTAC

BHT

SFX SFX CFX FPU LSBRN

 Buffer

(BTAC)

I-cache

update

update

FA FA

FA
R

+4

BTAC prediction

BHT prediction

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
 history based prediction
- overrides BTAC prediction

Case Study:

PPC 604
(processor)

Recovery from Mispeculation

The predicted path:

The important thing is the TAG

Recovery from wrong prediction:

Performance of 2-bit Predictor

Prediction accuracy varies:

80% to 95%

Can the accuracy be ~= 100%

Search for Advanced Predictor

If (a == 2) {

 a = 0 ;

}
If (b == 2){

 b = 0;

}
If (a != b) {

 Do something;

}

Taken

Taken

NotTaken

Such branches are co-related.

- Simplest predictor: Just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor

 - Tournament predictor
 - Tagged Hybrid Predictor

Correlating Predictor: a Framework

– Need to keep record of recently executed branch instructions!
– History of the branch instruction (for which the prediction is going to be made)
– Intelligent mechanism to make the final prediction out of these history.

Individual
BHSR
for every branch
instruction

Left shift is
performed on
prediction

This is called as two level adaptive branch prediction

Two-level Prediction: Global BHSR

Common for all the
branch instructions

gshare Predictor

The most critical
part of the predictor

XOR XORXOR

Tournament Predictor

Intelligently
chose the one
from global
and local predictors

Tagged Hybrid Predictor

– A more sophisticated
 than tournament predictor

– History with multiple length: h[0:9] h[10:29]…….
– Each predictors are 2 or 3 bit (depends on implementation)
 saturating counter.
– A complex structure, takes time for prediction, but highly accurate

Tagged Vs gshare

References

1) Advance branch prediction technique, Chapter 5, Shen and Lipasti

2) Reducing branch cost with advanced branch prediction, Chapter 3,
 Computer Architecture: Quantitative Approach.

3) A PPM-like, tag-based branch predictor, Pierre Michaud, Journal of Instruction
 Level Parallelism, Vol 7, 2005.

Next Lecture

Dealing with data-flow (register and memory)

 Dynamically resolving
 WAR, WAW, and RAW

Register Renaming

R1 ← R2 + R3
R1 ← R3 * R4

R5 ← R5 + R6
R6 ← R4 + R7

R1 ← R2 + R3
RR1 ← R3 * R4

R5 ← R5 + R6
RR6 ← R4 + R7

How this can be done in hardware?

Register Renaming

R1 ← R2 + R3
R1 ← R3 * R4

R5 ← R5 + R6
R6 ← R4 + R7

R1 ← R2 + R3
RR1 ← R3 * R4

R5 ← R5 + R6
RR6 ← R4 + R7

ARF – Architectural Register File
RRF – Renamed Register File

Register Renaming

R1 ← R2 + R3
R1 ← R3 * R4

R5 ← R5 + R6
R6 ← R4 + R7

Updating the value in RRF and ARF
at finish and complete

True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Analyse latency and data flow limit

Let ADD, SUB, LOAD takes 2 cycles
MUL and DIV takes 4 cycles

Data flow graph

True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Data Flow Graph (DFG)

12 cycles

12 cycles

True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Data Flow Graph (DFG)

12 cycles

12 cycles

How to Ensure Data Flow
Hardware implementation for data-flow techniques:

IBM FP unit
processor

(without
tomasulo)

How to Ensure Data Flow
Hardware implementation for data-flow techniques:

With
Tomasulo
Algorithm

(IBM machine),

Almost all the
cpu uses this

Tomasulo Algorithm
Working of Tomasulo's Algorithm:

Tag Sink Tag Source

Tag DataBusy

Tag Data

RS

FLR

SDB

(Reservation Station)

(Floating Point Registers)

(Store Data Buffer)

Tomasulo Algorithm
Working of Tomasulo's Algorithm:

w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

Tomasulo Algorithm

6.0

yes 4 3.5

yes 1 10.0

7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8

w

x

Cycle 1: Dispatched instructions: w, x (in order)
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

w

0 6.0 0 7.8

0 6.0 1 ---

Tomasulo Algorithm

6.0

yes 4 3.5

yes 2 10.0

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8

w

x

Cycle 2: Dispatched instructions: y, z (in order)
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

z

w

0 6.0 0 7.8

1 --- 0 7.8

0 6.0 1 ---

2 --- 4 ---

Tomasulo Algorithm

0 13.8 0 7.8

0 6.0 0 13.8

2 --- 4 ---

6.0

yes 4 3.5

yes 2 10.0

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8
x

Cycle 3: Dispatched instructions: ____________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

z

y

x

Tomasulo Algorithm

6.0

yes 4 3.5

yes 2 10.0

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8

y

x

Cycle 4: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

x

0 13.8 0 7.8

0 6.0 0 13.8

2 --- 4 ---

Tomasulo Algorithm

6.0

yes 4 3.5

21.6

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8

z

Cycle 5: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

0 6.0 0 13.8

0 21.6 4 ---

x

Tomasulo Algorithm

6.0

82.8

21.6

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

(z) Mult/Div

Adder

RS

RS

FLR1

2

3

4

5

0

2

4

8

Cycle 6: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

0 21.6 0 82.8z

Next Lecture

Memory Data Flow
 Load bypassing
 Load forwarding

	Slide 1
	Branch Speculation
	Slide 3
	Slide 4
	BTAC and BHT Design (PPC 604)
	Branch Speculation
	Branch Speculation
	Mis-speculation Recovery
	Two-level Branch Prediction
	Two-level Prediction: Local History
	Local History Predictor Example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Thank You
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

