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Branch Speculation

• Condition resolution | Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

• Target address generation | Target Speculation
– Access register: 

• PC, General purpose register, Link register
– Perform calculation: 

• +/- offset, autoincrement, autodecrement



Branch Speculation

• Leading Speculation
– Typically done during the Fetch stage
– Based on potential branch instruction(s) in the current fetch 

group
• Trailing Confirmation

– Typically done during the Branch Execute stage
– Based on the next Branch instruction to finish execution
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Branch Instruction Speculation

– Branch target prediction 
– Branch direction prediction

State-transition diagram Implementation using BTB



BTAC and BHT Design
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BHT prediction 

BTAC:
- 64 entries
- fully associative
- hit => predict taken

BHT:
- 512 entries
- direct mapped
- 2-bit saturating counter
  history based prediction
- overrides BTAC prediction

Case Study:

PPC 604 
(processor)



Recovery from Mispeculation

The predicted path:

The important thing is the TAG

Recovery from wrong prediction:



Performance of 2-bit Predictor

Prediction accuracy varies:

80% to 95%

Can the accuracy be ~= 100%



Search for Advanced Predictor

If (a == 2) {
 
   a = 0 ;

}
If (b == 2){
 
   b = 0;

}
If  (a != b) {
    
      Do something;

}
    

Taken

Taken

NotTaken

Such branches are co-related.

- Simplest predictor: Just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor

     - Tournament predictor
     - Tagged Hybrid Predictor



Correlating Predictor: a Framework

– Need to keep record of recently executed branch instructions!
– History of the branch instruction (for which the prediction is going to be made)
– Intelligent mechanism to make the final prediction out of these history.

Individual 
BHSR 
for every branch 
instruction

Left shift is 
performed on 
prediction

This is called as two level adaptive branch prediction



Two-level Prediction: Global BHSR

Common for all the 
branch instructions



gshare Predictor

The most critical 
part of the predictor

XOR XORXOR



Tournament Predictor

Intelligently 
chose the one
from global 
and local predictors



Tagged Hybrid Predictor

– A more sophisticated 
   than tournament predictor

– History with multiple length: h[0:9] h[10:29]…….
– Each predictors are 2 or 3 bit (depends on implementation)
   saturating counter. 
– A complex structure, takes time for prediction, but highly accurate



Tagged Vs gshare
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Next Lecture

Dealing with data-flow (register and memory)
    

     Dynamically resolving 
   WAR, WAW, and RAW



Register Renaming

R1 ← R2 + R3 
R1 ← R3 * R4 

R5 ← R5 + R6
R6 ← R4 + R7

R1 ← R2 + R3 
RR1 ← R3 * R4 

R5 ← R5 + R6
RR6 ← R4 + R7

How this can be done in hardware?



Register Renaming

R1 ← R2 + R3 
R1 ← R3 * R4 

R5 ← R5 + R6
R6 ← R4 + R7

R1 ← R2 + R3 
RR1 ← R3 * R4 

R5 ← R5 + R6
RR6 ← R4 + R7

ARF – Architectural Register File
RRF – Renamed Register File



Register Renaming

R1 ← R2 + R3 
R1 ← R3 * R4 

R5 ← R5 + R6
R6 ← R4 + R7

Updating the value in RRF and ARF 
at finish and complete



True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Analyse latency and data flow limit

Let ADD, SUB, LOAD takes 2 cycles
MUL and DIV takes 4 cycles

Data flow graph



True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Data Flow Graph (DFG)

12 cycles

12 cycles



True Data Dependency

Read after Write (RAW): one of the challenge for parallel execution

Data Flow Graph (DFG)

12 cycles

12 cycles



How to Ensure Data Flow
Hardware implementation for data-flow techniques:

IBM FP unit
processor 

(without 
tomasulo)



How to Ensure Data Flow
Hardware implementation for data-flow techniques:

With 
Tomasulo
Algorithm

(IBM machine),

Almost all the
cpu uses this



Tomasulo Algorithm
Working of Tomasulo's Algorithm: 

Tag Sink Tag Source

Tag DataBusy

Tag Data

RS

FLR

SDB

(Reservation Station)

(Floating Point Registers)

(Store Data Buffer)



Tomasulo Algorithm
Working of Tomasulo's Algorithm: 

w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2



Tomasulo Algorithm

6.0

yes 4 3.5

yes 1 10.0

7.8

Sink TagTag Source
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Cycle 1: Dispatched instructions: w, x (in order)
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

w

0 6.0 0 7.8

0 6.0 1 ---



Tomasulo Algorithm

6.0

yes 4 3.5

yes 2 10.0

yes 5 7.8

Sink TagTag Source

SourceSinkTag Tag

TagBusy Data

Mult/Div
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x

Cycle 2: Dispatched instructions: y, z (in order)
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

z

w

0 6.0 0 7.8

1 --- 0 7.8

0 6.0 1 ---

2 --- 4 ---



Tomasulo Algorithm

0 13.8 0 7.8

0 6.0 0 13.8

2 --- 4 ---
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Cycle 3: Dispatched instructions: ____________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

z

y

x



Tomasulo Algorithm
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Cycle 4: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

y

x

0 13.8 0 7.8

0 6.0 0 13.8

2 --- 4 ---



Tomasulo Algorithm

6.0

yes 4 3.5

21.6

yes 5 7.8

Sink TagTag Source
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Cycle 5: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

0 6.0 0 13.8

0 21.6 4 ---

x



Tomasulo Algorithm

6.0

82.8

21.6
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Cycle 6: Dispatched instructions:___________
w: R4 ← R0 + R8

x: R2 ← R0 * R4

y: R4 ← R4 + R8

z: R8 ← R4 * R2

0 21.6 0 82.8z



Next Lecture

Memory Data Flow
     Load bypassing
     Load forwarding 
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