Superscalar Architecture

Organization | Fetch | Decode | Scheduling

Computer System Architecture

Indian Institute of Technology Tirupati
jtt@iittp.ac.in

315 March, 2020

Superscalar Pipeline Stages

I
* I
L

:

ﬁ n (1n order)

ﬂ n (in order)

Stage i Stage i
% 1
Buffer (1) Buffer (n)
1 1
Stage i + 1 Stage i + |
(a)
Stage i I

Buffer (= n)

Stage i + 1

v (in order)

E

v (out of order)

l

h Progress in lock-up fashion

The issues:

- Control dependency

- Data dependency

- Need of program
Order

Detection and
Resolving

Progress in free fashion
(dynamic fashion)

Superscalar Pipeline Stages

Dynamic superscalar Fetch I
pipeline T
| Instruction Buffer
In !
Decode I
program order :
| Dispatch Buffer
l,l
Dispatch I
7
Issuing Buffer
I
!
Out of Execute I
order u
' | Completion Buffer
/' !
Complete I
v
In | Store Buffer
program order T |
Retire I

Superscalar Challenges

L

I-cache
'I []
Branch TETCH Instruction
Predictor . Flow
\ Instruction
IIIIII'IIIIIIIBuffer
? DECODE
Floating-point Y
oating-poin gl
v A
EXECUTE '
eorder
. Buffer OITTTITITIIIIIIIIIIITITITITIO
Register (ROB)
Data COMMIT
Flow Store LITT1 Ivll 1111 D_CaChe
Queue

Looking into the detail:

1) How to fetch N
instructions simultaneously

2) What if some of them are
Dependent of others?

3) How to manage memory while
Fetching the instructions.

4) How to schedule the
Instruction execution: are all the
Data ready for execution?

Memory
Data
Flow

Instruction Flow

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 |

Objective: to fetch N instructions per cycle for N width

superscalar.
PC

Challenges:

Instruction Memoa

ry

— Branch target misalignment
— Branches: control dependences
— Instruction cache misses

l

3 instructions fetched

Instruction Flow

Objective: to fetch N instructions per cycle for N width
superscalar.

Challenges:
— Branch target misalignment
— Branches: control dependences
— Instruction cache misses

Solutions
— Code alignment (static vs. dynamic)
— Prediction/speculation
— Solution to cache misses

Fetch Alignment

ADD R1, R2, R3
JMP XX00000

ADD R1, R2, R3
JLE XX00001

Row decoder

| Fetch group >
| Row width >

Fetch Alignment

Requires two
Cycles to fetch.

Cycle 1

Cycle 2

Row decoder

=« Fetch group >
| Row width >

Fetch Alignment: Solutions

Solutions:

Compiler based static alignment
Hardware dynamic alignment

All the branch instructions

The static alignment:

All the target instructions should start f

i ,

Must be placed here

rom O™ location

Fetch Alignment: Solutions

Size of fetch group < Cache line size

00 01 10 11
.=——-| Single Cache line

Fetch Limits Due to Branch

Size of fetch group < Cache line size

00 01 10 11
TAG ADD JMP MOV SHFT

\J \/
ADD JMP Unused fetch

Instruction Fetch: IBM RS/6000

IBM RS/6000 Instruction cache architecture:

- 2 —way set associative I-Cache with a line size of 16
Instructions (64 bytes)

- Each row of the I-Cache stores 4 associative sets (two
per set) of instructions

- Each line of I-cache spans four physical rows

- Physical I-cache array is actually composed of 4
Independent sub-arrays

- One instruction can be accessed form one array

|-Cache Fetch Hardware: RS/6000

]

O
directory
5els
Ad B

4

Even
directory
505
A&B

TLEB
hit
and
buffer

control
logic

255

T T
logic logic
0 0

Al B A2 |B2
11A5 |B5 1 A6 |B6
21A49% | BY 21A10)BIO
F|AIZBIZ FlAl4B14

255 255
mux mux

255

Instmction buffer nerwork

Interlock,
dispaich,

Instruction n

branch,

[nstruction # + 1
Instruction n + 2

} .

executicn

logic

o}

Two-away set associative I-Cache with auto-realignment

Insiruchon n + 3

Superscalar Pipeline Stages

Dynamic superscalar Fetch I
pipeline T
| Instruction Buffer
In !
Decode I
program order :
| Dispatch Buffer
l,l
Dispatch I
7
Issuing Buffer
I
!
Out of Execute I
order u
' | Completion Buffer
/' !
Complete I
v
In | Store Buffer
program order T |
Retire I

Challenges in Decoding

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2|

* Primary Tasks
* ldentify individual instructions (!)

* Determine instruction types
* Determine dependences between Instructions (one

of the most challenging tasks)

* Two important factors
* Instruction set architecture

* Pipeline width

Pentium Pro Fetch/Decode

uROM |

Macroinstruction bytes from IFU

|

Instruction buffer 16 bytes To next
address
calculation
! ! Y
Decoder | Decoder | Decoder Y
0 1 2 f
’ Branch
address
4 uops 1 uop Y 1 uop calculation

uop queue (6)

v

Pre-decoding in AMD

- To simplify the decoding logic
- To avoid repeated decoding

From memory

8 instruction bytes i fhf —————————=—

Predecode logic

8 instruction bytes + predecode bits] 64 + 40 =====--

[-Cache

16 instruction bytes + predecode bits | 128 + 80

Decode, translate,
and dispatch

Upto4 ROPs ROPI ROP2Z ROP3 ROP4

Bytel | Byvte2 | ==+ | Byte8

3 buts 3 bits 3 bits

Dependency Check and Resolve

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 |

Problems:

- Data (operand/registers) dependency

Solutions:

Score-board
Tomasulo's Algorithm
(dynamic scheduling)

Instruction Dispatching

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2|

* Diversified pipeline: Multiple functional units

* Different type instructions executed by different
Functional units

* Distributed control
* Operands are fetched from Register File
* Operands may not be ready yet

°* Reservation station for instructions to be executed

Instruction Dispatch and Issue

* Parallel pipeline
* Centralized instruction fetch
* Centralized instruction decode

* Diversified pipeline (dynamic superscalar)
* Distributed instruction execution

Necessity of Instruction Dispatch

Condition for Dispatch: ﬂ

1) Decoding is completed Instruction fetching

2) Registers data are read from the
register file
3) Whether execution units is/are free

Takes instruction from Dispatch buffer,
dispatch them to execution units

If execution units is/are ‘< ¥
not free? ~

Centralized Reservation Station

Instructions can wait!

Dispatch
(issue)

{

Reservation station: centralized and distributed

Centralized reservation
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ I station (dispatch buffer)
/

'

Execute <

l

l

1

R

1

-
-

Y

Y

i
_l_l
—

Y

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ICompletion buffer

Distributed Reservation Station

%
=
721
B
[l
(@)
=
o

Distributed
v

uffer
reservation
stations

=y

Dispatch
Issue I
€ <

iy
UL E

B
;(
-
<
g
3
o)
a
=-
=

Instruction Execution

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 |

The next challenge is to execute the dispatched instructions, objective is
performance improvement.

How to decide the size of reservation station?
What type of execution units are necessary?
How many execution of each type is needed?
How many branch unit is desirable?

How many load/store unit is desirable?

How many ALU is needed

How many FP unit is needed?

Why these are such a big issues? Think of program diversity!

Instruction Execution

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 |

The answer:

- Workload needs to be analyzed
- The port numbers of Register file and D-Cache Matters.

- Wherever there is limitation in ports, the execution
needs to be serialized

- Inter-functional unit data sharing network
(for data forwarding)

Completion/Retirement

IF | Decode | Operand Fetch | Dispatch | Execution | Completion |
1 | Fetch |
!
| Instruction/decode buffer
U
| Decode
Out-of-order execution | | Dispatch buffr
— ALU instructions | Dispatch |
— Load/store instructions ' ' J%]]
In-order Yoo LT T TICT T AT T LT e
completion/retirement | | | i |

— Precise exceptions Execute
— Memory coherence and y ' , , y

Out of order

consistency | Fnish
Solutions T LT T T T T T T [T Jreorderscompletion butfer
Complete
— Reorder buffer 3 | T I
— Store buffer 0 1| |U~| [[] swrebumer

Challenges in Superscalar Processor

i | Fetch
. . . . U
Maln ObJeCtlve' | Instruction/decode buffer
¢
. . | Decode
How to maintain through-put 3§ T
of n for n-wide super-scalar? = | Dispatch buffer
v
Completing n instructions per | Dispatch
cycle ¢
/ / Y A Y R “
e | | | | | e
. . Issue
Recall the limits of | i] | w
scalar pipeline: 5
“g Execute
=]
IPC<=1 ? \” Y y Y Y
Finish
Supel’SCBJ g0a|: _x_ _______________ | Reorder/completion buffer
| Complete
IPC ~=N i
£ ¢
RS | Store buffer
]
| Retire

Superscalar Technigues

We will discuss in detail, now, the solution for each stages!

The ultimate performance goal of a superscalar
pipeline is to achieve maximum throughput of
Instruction processing

Instruction processing involves

* Instruction flow — Branch instructions
* Register data flow — ALU instructions
* Memory data flow — L/S instructions

Max Throughput — Min (Branch, ALU, Load penalty)

Superscalar Challenges

Branch instructions

and
Control-flow path

Register Data
dependency.

Primarily to deal
with Register file

L

I-cache

v

Y

DECODE

Instruction

Branch FETCH
. <+ Flow
Predictor [] Instruction
OTTTTJITTITT1] Buffer

Memory

Data
Flo

y‘ EXECUTE y
eorder '
. Buffer T TIITJITTTITTTITIT1]
Register (ROB)
Data COMMIT
FlOW Store v
Queue HNEEEEEEEEER

Memory data dependency
Mainly to deal with
D-cache

Instruction Flow

* Goal of Instruction Flow

— Supply processor with maximum number of useful
Instructions every clock cycle

— To be able to fetch n instructions every cycle

* Impediments
— Branches and jumps

— Finite I-Cache
* Capacity (on cache miss, the fetch has to stall)
* Bandwidth restrictions
(how many instruction can be read in a single clock cycle)

Branch Types and Implementation

1. Types of Branches
A. Conditional or Unconditional
B. Save PC?
C. How is target computed?

Single target (immediate, PC + immediate)
Multiple targets (register)

2. Branch Architectures

A. Condition code or condition registers
B. Register

Branches - PowerPC

Example of branch instructions from PowerPC

Instructions Micro-operations/signals
Branch (unconditional, no save PC, PC+imm)
Branch absolute (uncond, no save PC, imm)
Branch and link (uncond, save PC, PC+imm)
Branch abs and link (uncond, save PC, imm)

Branch conditional (conditional, no save PC, PC+imm)
Branch cond abs (cond, no save PC, imm)

Branch cond and link (cond, save PC, PC+imm)

Branch cond abs and link (cond, save PC, imm)

Branch cond to link register (cond, don’t save PC, reQ)

Branch cond to link reg and link (cond, save PC, req)

Branch cond to count reg (cond, don’t save PC, reQ)

Branch cond to count reg and link (cond, save PC, req)

Branches - DEC Alpha

Alpha: 3 Types of Branches

Conditional branch (cond, no save PC, PC+imm)
Bxx Ra, disp

Unconditional branch (uncond, Save PC, PC+imm)
Br Ra, disp

Jumps (uncond, save PC, Register)
J Ra

Branches - MIPS

MIPS Instruction Set

6 Types of Branches

Instructions Micro-operations/signals
Jump (uncond, no save PC, imm)
Jump and link (uncond, save PC, imm)
Jump register (uncond, no save PC, register)
Jump and link register (uncond, save PC, register)
Branch (conditional, no save PC, PC+imm)

Branch and link (conditional, save PC, PC+imm)

Difficulty of Branch Instruction

They severely affects the performance, primarily due to irregular program
flow.

Effects of Branches
* Fragmentation of I-Cache lines
* Need to determine branch direction
* Need to determine branch target

* Use up execution resources

* Pipeline drain/fill

Control Flow of a Program

BB1

D

BB 3

BB 5

e Control Flow Graph

main:

loop:

end:

addi
addi
addi
addi
add
bge

lw
bge

Sw

addi
addi
addi
addi
blt

r2,
r3,
r4,
r5,

rio,
rio,

r20,
r21,
r20,
r21,

12

r20,
rio,

r2,
r3,
r4,

rio,

ro, A

ro, B

ro, C BB 1
ro, N

ro, ro

r5, end

0(r2)

0(r3) BB 2
r21,T1

0(r4) BB 3
o(ra) | BB 4
rlio,1

r2, 4

r3, 4 BB 5
r4, 4

r5, loop

— Shows possible paths of control flow through basic blocks

(BB)

Program Control Flow

* Implicit Sequential Control Flow

— Static Program Representation
* Control Flow Graph (CFG)
— Nodes = basic blocks
— Edges = Control flow transfers

— Physical Program Layout
* Mapping of CFG to linear program memory
* Implied sequential control flow
— Dynamic Program Execution
* Traversal of the CFG nodes and edges (e.g. loops)
* Traversal dictated by branch conditions
— Dynamic Control Flow
* Deviates from sequential control flow

* Disrupts sequential fetching
* Can stall IF stage and reduce I-fetch bandwidth

Disruption of Sequential Control Flow

----------- s Fetch
1
[
: [T T T T T T] nstruction/Decode Buffer
1 v
! Decode
1
[
: [T 1 lul [T | Dispatch Buffer
1
1 Dispatch
1
I J|
1
' Reservation
1 issus A OO T | '4' | CL 1 Stations
: |B_ranch| | |
oo on o om oo ol
Execute
¥ \ \
- Fnsh__ ||| [C[[) Reorder!
Completion Buffer
Complete
T
T T T T T T 1 Store Buffer
7

Retire

Branch Prediction

* Condition resolution | Condition speculation
— Access regqister:
* Condition code register, General purpose register
— Perform calculation:
* Comparison of data register(s)

* Target address generation | Target Speculation
— Access reqister:
* PC, General purpose register, Link register
— Perform calculation:
* +/- offset, autoincrement, autodecrement

Target Address Generation
'""".'.::::E Fe:ch

i
I I -
' ! PC-, [T I"["T] Decode Buffer
, vorel. 7
' Reg. ! ' Decode
' ind. - 7
Reag : : [T T 1 : [T [] Dispatch Buffer
in '
with 1] Dispatch
offset: |
, J ! ! , | Reservation
S e LI [T 1] [CT 1] [CIT 1] [T 1] Stations
I Issue] T]]]
1
. |BrancH | |
" Erecite J | |
]
. Fmisho LI I T T TT T TTT]Completion Buffer
)
Complete

[TTTTTT 1 Store Buffer

GP
reg.
value
comp.

Condition Resolution

er

| Reservation

Stations

Completion Buffer

e el < Fetch
I 1
! : : Decode Buff
7
cc Decode
1 reg. | 7 .
: 1 Dispatch Buffer
| y
: ' Dispatch
I |
: J |
: ; J)]
'.Flssue'l T | |] | . | J | .
: [Branch] |
" Execute J l J
Finish
ffffffffff _| :
Complete

]

VI!.I

Retire

Store Buffer

Solving Target Address Generation

Can | predict the target address during the fetch stage itself?

This would solve (delayed) address generation penalty!

HOW?

Branch/Jump Target Prediction

Branch target buffer (BTB)

Access Branch instruction Branch target
I-cache address (BIA) field address (BTA) field
Access '
BTB
BIA BTA
PC
(instruction
fetch address) ,_
) Speculative

mmmmmmmmmmmmmmmmmmmmmm target address
(Used as the new PC if branch is predicted taken)

* Branch Target Buffer: small cache in fetch stage

— Previously executed branches, address, taken history, target(s)
* Fetch stage compares current FA against BTB

— If match, use prediction
— If predict taken, use BTB target
* When branch executes, BTB is updated
* Optimization:
— Size of BTB: increases hit rate
— Prediction algorithm: increase accuracy of prediction

Dynamic Branch Prediction

* Main advantages:

— Learn branch behavior autonomously
* No compiler analysis, heuristics, or profiling

— Adapt to changing branch behavior
* Program phase changes branch behavior

* First proposed in 1979-1980

— US Patent #4,370,711, Branch predictor using
random access memory, James. E. Smith

* Continually refined since then

Branch Instruction Speculation

L. to I-cache
Prediction

Spec. target ‘| PC(seq.) = FA (fetch address)

Fetch
J,I
Spec. cond. | Decode Buffer
A 7
BTB Decode
update T
(target addr. | Dispatch Buffer
and history) 7
Dispatch
| IJ | |
| | | J | Reservation
R —— | | | | Stations
Issue = 4 .;]]
L Branch| | |
Execute J
)
Finish

cooAnsne | Completion Buffer
‘!I

Branch Instruction Speculation

- Simplest predictor:

- just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor
- Tournament predictor

Branch Instruction Speculation

Implementation of 2 -bit predictor and extension
to advance predictor.

Branch instruction Branch target Branch
I-cache address field address field history

BTB

BIA BTA

Initial '_ﬂ
state .
Speculative Y ¥

target address FSM

Prf:diclled \ Predict taken
direction Actyal direction or not taken

Branch
history

State-transition diagram Implementation using BTB

Recovery from Misprediction

The predicted path:

The important thing is the TAG

Recovery from wrong prediction:

Branch Instruction Speculation

- Simplest predictor: Just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor
- Tournament predictor

Next Lecture: Prediction

Thank You

References:

- Chapter 5, Instruction flow techniques: Shen and Lipasti, Modern Processor
Design, Fundamentals of Superscalar Processors.

- Chapter 9, Advanced Instruction flow Technique: Shen and Lipasti, Modern
Processor Design, Fundamentals of Superscalar Processors.

- Chapter 3, Instruction level parallelism and Its Exploitation:
Henessy and Patterson, Computer Architecture-Quantitative Approach, 5" Ed.

	Slide 1
	Superscalar Pipeline Stages
	Slide 3
	Superscalar Challenges
	Instruction Flow
	Instruction Flow
	Fetch Alignment
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Instruction Fetch
	RIOS-I Fetch Hardware
	Slide 14
	Issues in Decoding
	Pentium Pro Fetch/Decode
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Centralized Reservation Station
	Distributed Reservation Station
	Issues in Instruction Execution
	Slide 25
	Issues in Completion/Retirement
	A Dynamic Superscalar Processor
	Superscalar Techniques
	Slide 29
	Goal and Impediments in Instruction Flow
	Branch Types and Implementation
	Branches – PowerPC
	Branches – DEC Alpha
	Branches – MIPS
	What’s So Bad About Branches?
	Control Dependences
	Program Control Flow
	Disruption of Sequential Control Flow
	Branch Prediction
	Target Address Generation
	Condition Resolution
	Branch/Jump Target Prediction
	Slide 43
	Dynamic Branch Prediction
	Branch Instruction Speculation
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

