
Superscalar Architecture
Organization | Fetch | Decode | Scheduling

Computer System Architecture

Indian Institute of Technology Tirupati
 jtt@iittp.ac.in

31st March, 2020

Superscalar Pipeline Stages

The issues:

- Control dependency
- Data dependency
- Need of program
 Order

Detection and
Resolving

Progress in lock-up fashion

Progress in free fashion
(dynamic fashion)

Superscalar Pipeline Stages

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

In
program order

Out of
order

In
program order

Dynamic superscalar
pipeline

Superscalar Challenges

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Looking into the detail:

1) How to fetch N
 instructions simultaneously

2) What if some of them are
 Dependent of others?

3) How to manage memory while
 Fetching the instructions.

4) How to schedule the
 Instruction execution: are all the
 Data ready for execution?

Instruction Flow

Challenges:

– Branch target misalignment
– Branches: control dependences
– Instruction cache misses

Instruction Memory

PC

3 instructions fetched

Objective: to fetch N instructions per cycle for N width
 superscalar.

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ….

Instruction Flow

Challenges:
– Branch target misalignment
– Branches: control dependences
– Instruction cache misses

Solutions
– Code alignment (static vs. dynamic)
– Prediction/speculation
– Solution to cache misses

Objective: to fetch N instructions per cycle for N width
 superscalar.

Fetch Alignment

ADD R1, R2, R3
JMP XX00000

ADD R1, R2, R3
JLE XX00001

Fetch Alignment

Requires two
Cycles to fetch.

Cycle 1

Cycle 2

Fetch Alignment: Solutions

Solutions:

 Compiler based static alignment
 Hardware dynamic alignment

All the target instructions should start from 0th location

All the branch instructions
Must be placed here

The static alignment:

Fetch Alignment: Solutions

Size of fetch group < Cache line size

Single Cache line

00 01 10 11

TAG

TAG

Rotator Logic

Fetch Limits Due to Branch

Size of fetch group < Cache line size

ADD JMP MOV SHFT
00 01 10 11

TAG

TAG

TAG

ADD JMP Unused fetch

Instruction Fetch: IBM RS/6000

- 2 – way set associative I-Cache with a line size of 16
instructions (64 bytes)

- Each row of the I-Cache stores 4 associative sets (two
per set) of instructions

- Each line of I-cache spans four physical rows

- Physical I-cache array is actually composed of 4
independent sub-arrays

- One instruction can be accessed form one array

IBM RS/6000 Instruction cache architecture:

I-Cache Fetch Hardware: RS/6000

Two-away set associative I-Cache with auto-realignment

Superscalar Pipeline Stages

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Issuing Buffer

Dispatch

Completion Buffer

Execute

Store Buffer

Complete

Retire

In
program order

Out of
order

In
program order

Dynamic superscalar
pipeline

Challenges in Decoding

• Primary Tasks
• Identify individual instructions (!)
• Determine instruction types
• Determine dependences between instructions (one

of the most challenging tasks)

• Two important factors
• Instruction set architecture
• Pipeline width

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ….

Pentium Pro Fetch/Decode

Pre-decoding in AMD

- To simplify the decoding logic
- To avoid repeated decoding

Dependency Check and Resolve

Score-board
Tomasulo's Algorithm
(dynamic scheduling)

Problems:

 - Data (operand/registers) dependency

Solutions:

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ….

Instruction Dispatching

• Diversified pipeline: Multiple functional units

• Different type instructions executed by different
Functional units

• Distributed control

• Operands are fetched from Register File

• Operands may not be ready yet

• Reservation station for instructions to be executed

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ….

Instruction Dispatch and Issue

• Parallel pipeline
• Centralized instruction fetch
• Centralized instruction decode

• Diversified pipeline (dynamic superscalar)
• Distributed instruction execution

Necessity of Instruction Dispatch

Condition for Dispatch:

 1) Decoding is completed
 2) Registers data are read from the
 register file
 3) Whether execution units is/are free

Takes instruction from Dispatch buffer,
dispatch them to execution units

If execution units is/are
not free?

Centralized Reservation Station
Instructions can wait! Reservation station: centralized and distributed

Distributed Reservation Station

Instruction Execution

● How to decide the size of reservation station?

● What type of execution units are necessary?

● How many execution of each type is needed?

● How many branch unit is desirable?

● How many load/store unit is desirable?

● How many ALU is needed

● How many FP unit is needed?

The next challenge is to execute the dispatched instructions, objective is
performance improvement.

Why these are such a big issues? Think of program diversity!

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 | ….

Instruction Execution

The answer:

- Workload needs to be analyzed

- The port numbers of Register file and D-Cache Matters.

- Wherever there is limitation in ports, the execution
 needs to be serialized

- Inter-functional unit data sharing network
 (for data forwarding)

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 | ….

Completion/Retirement

• Out-of-order execution
– ALU instructions
– Load/store instructions

• In-order
completion/retirement
– Precise exceptions
– Memory coherence and

consistency
• Solutions

– Reorder buffer
– Store buffer

IF | Decode | Operand Fetch | Dispatch | Execution | Completion | ….

Challenges in Superscalar Processor

How to maintain through-put
of n for n-wide super-scalar?

Completing n instructions per
cycle

Recall the limits of
scalar pipeline:

IPC <= 1

Superscal goal:

IPC ~= n

Main objective:

Superscalar Techniques

• The ultimate performance goal of a superscalar
pipeline is to achieve maximum throughput of
instruction processing

• Instruction processing involves

• Instruction flow – Branch instructions

• Register data flow – ALU instructions

• Memory data flow – L/S instructions

• Max Throughput – Min (Branch, ALU, Load penalty)

We will discuss in detail, now, the solution for each stages!

Superscalar Challenges

I-cache

FETCH

DECODE

COMMIT

D-cache

Branch
Predictor Instruction

Buffer

Store
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Instruction

Register
Data

Memory
Data

Flow

EXECUTE

(ROB)

Flow

Flow

Branch instructions
and
Control-flow path

Register Data
dependency.

Primarily to deal
with Register file

Memory data dependency
Mainly to deal with
D-cache

Instruction Flow

• Goal of Instruction Flow
– Supply processor with maximum number of useful

instructions every clock cycle
– To be able to fetch n instructions every cycle

• Impediments
– Branches and jumps
– Finite I-Cache

• Capacity (on cache miss, the fetch has to stall)
• Bandwidth restrictions

(how many instruction can be read in a single clock cycle)

Branch Types and Implementation

1. Types of Branches
A. Conditional or Unconditional

B. Save PC?

C. How is target computed?
• Single target (immediate, PC + immediate)
• Multiple targets (register)

2. Branch Architectures
A. Condition code or condition registers

B. Register

Branches – PowerPC

Example of branch instructions from PowerPC

Instructions Micro-operations/signals
Branch (unconditional, no save PC, PC+imm)

Branch absolute (uncond, no save PC, imm)

Branch and link (uncond, save PC, PC+imm)

Branch abs and link (uncond, save PC, imm)

Branch conditional (conditional, no save PC, PC+imm)

Branch cond abs (cond, no save PC, imm)

Branch cond and link (cond, save PC, PC+imm)

Branch cond abs and link (cond, save PC, imm)

Branch cond to link register (cond, don’t save PC, reg)

Branch cond to link reg and link (cond, save PC, reg)

Branch cond to count reg (cond, don’t save PC, reg)

Branch cond to count reg and link (cond, save PC, reg)

Branches – DEC Alpha

Alpha: 3 Types of Branches

Conditional branch (cond, no save PC, PC+imm)

Bxx Ra, disp

Unconditional branch (uncond, Save PC, PC+imm)

Br Ra, disp

Jumps (uncond, save PC, Register)

J Ra

Branches – MIPS

MIPS Instruction Set
6 Types of Branches

Instructions Micro-operations/signals

Jump (uncond, no save PC, imm)

Jump and link (uncond, save PC, imm)

Jump register (uncond, no save PC, register)

Jump and link register (uncond, save PC, register)

Branch (conditional, no save PC, PC+imm)

Branch and link (conditional, save PC, PC+imm)

Difficulty of Branch Instruction

Effects of Branches

• Fragmentation of I-Cache lines

• Need to determine branch direction

• Need to determine branch target

• Use up execution resources

• Pipeline drain/fill

They severely affects the performance, primarily due to irregular program
flow.

• Control Flow Graph
– Shows possible paths of control flow through basic blocks

(BB)

BB 1

BB 2

BB 3 BB 4

BB 5

 main:
 addi r2, r0, A
 addi r3, r0, B
 addi r4, r0, C BB 1
 addi r5, r0, N
 add r10,r0, r0
 bge r10,r5, end
 loop:
 lw r20, 0(r2)
 lw r21, 0(r3) BB 2
 bge r20,r21,T1
 sw r21, 0(r4) BB 3
 b T2
 T1:
 sw r20, 0(r4) BB 4
 T2:
 addi r10,r10,1
 addi r2, r2, 4
 addi r3, r3, 4 BB 5
 addi r4, r4, 4
 blt r10,r5, loop
 end:

Control Flow of a Program

Program Control Flow

• Implicit Sequential Control Flow
– Static Program Representation

• Control Flow Graph (CFG)
– Nodes = basic blocks
– Edges = Control flow transfers

– Physical Program Layout
• Mapping of CFG to linear program memory
• Implied sequential control flow

– Dynamic Program Execution
• Traversal of the CFG nodes and edges (e.g. loops)
• Traversal dictated by branch conditions

– Dynamic Control Flow
• Deviates from sequential control flow
• Disrupts sequential fetching
• Can stall IF stage and reduce I-fetch bandwidth

Disruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish
Completion Buffer

Branch

Branch Prediction

• Condition resolution | Condition speculation
– Access register:

• Condition code register, General purpose register
– Perform calculation:

• Comparison of data register(s)

• Target address generation | Target Speculation
– Access register:

• PC, General purpose register, Link register
– Perform calculation:

• +/- offset, autoincrement, autodecrement

Target Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

Condition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

CC
reg.

GP
reg.
value
comp.

Solving Target Address Generation

Can I predict the target address during the fetch stage itself?

This would solve (delayed) address generation penalty!

HOW?

Branch/Jump Target Prediction

• Branch Target Buffer: small cache in fetch stage
– Previously executed branches, address, taken history, target(s)

• Fetch stage compares current FA against BTB
– If match, use prediction
– If predict taken, use BTB target

• When branch executes, BTB is updated
• Optimization:

– Size of BTB: increases hit rate
– Prediction algorithm: increase accuracy of prediction

Dynamic Branch Prediction

• Main advantages:
– Learn branch behavior autonomously

• No compiler analysis, heuristics, or profiling

– Adapt to changing branch behavior
• Program phase changes branch behavior

• First proposed in 1979-1980
– US Patent #4,370,711, Branch predictor using

random access memory, James. E. Smith

• Continually refined since then

Branch Instruction Speculation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(target addr.
and history)

Spec. cond.

 FA-mux

Branch Instruction Speculation

- Simplest predictor:

 - just predict not taken
 - 1-bit predictor
 - 2-bit predictor

- Advance predictors:
- Correlating predictor

 - Tournament predictor

Branch Instruction Speculation

Implementation of 2 -bit predictor and extension
to advance predictor.

State-transition diagram Implementation using BTB

Recovery from Misprediction

The predicted path:

Recovery from wrong prediction:

The important thing is the TAG

Branch Instruction Speculation

- Simplest predictor: Just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor

 - Tournament predictor

Next Lecture: Prediction

Thank You

References:

 - Chapter 5, Instruction flow techniques: Shen and Lipasti, Modern Processor
 Design, Fundamentals of Superscalar Processors.

 - Chapter 9, Advanced Instruction flow Technique: Shen and Lipasti, Modern
 Processor Design, Fundamentals of Superscalar Processors.

 - Chapter 3, Instruction level parallelism and Its Exploitation:
 Henessy and Patterson, Computer Architecture-Quantitative Approach, 5th Ed.

	Slide 1
	Superscalar Pipeline Stages
	Slide 3
	Superscalar Challenges
	Instruction Flow
	Instruction Flow
	Fetch Alignment
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Instruction Fetch
	RIOS-I Fetch Hardware
	Slide 14
	Issues in Decoding
	Pentium Pro Fetch/Decode
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Centralized Reservation Station
	Distributed Reservation Station
	Issues in Instruction Execution
	Slide 25
	Issues in Completion/Retirement
	A Dynamic Superscalar Processor
	Superscalar Techniques
	Slide 29
	Goal and Impediments in Instruction Flow
	Branch Types and Implementation
	Branches – PowerPC
	Branches – DEC Alpha
	Branches – MIPS
	What’s So Bad About Branches?
	Control Dependences
	Program Control Flow
	Disruption of Sequential Control Flow
	Branch Prediction
	Target Address Generation
	Condition Resolution
	Branch/Jump Target Prediction
	Slide 43
	Dynamic Branch Prediction
	Branch Instruction Speculation
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

