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Superscalar Pipeline Stages
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The issues:

- Control dependency

- Data dependency

- Need of program
Order

Detection and
Resolving

Progress in free fashion
(dynamic fashion)



Superscalar Pipeline Stages
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Superscalar Challenges
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Looking into the detail:

1) How to fetch N
instructions simultaneously

2) What if some of them are
Dependent of others?

3) How to manage memory while
Fetching the instructions.

4) How to schedule the
Instruction execution: are all the
Data ready for execution?

Memory
Data
Flow




Instruction Flow

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ....

Objective: to fetch N instructions per cycle for N width

superscalar.
PC

Challenges:

Instruction Memoa

ry

— Branch target misalignment
— Branches: control dependences
— Instruction cache misses

l

3 instructions fetched



Instruction Flow

Objective: to fetch N instructions per cycle for N width
superscalar.

Challenges:
— Branch target misalignment
— Branches: control dependences
— Instruction cache misses

Solutions
— Code alignment (static vs. dynamic)
— Prediction/speculation
— Solution to cache misses



Fetch Alignment

ADD R1, R2, R3
JMP XX00000

ADD R1, R2, R3
JLE XX00001

Row decoder

| Fetch group >
| Row width >




Fetch Alignment

Requires two
Cycles to fetch.

Cycle 1

Cycle 2

Row decoder

=« Fetch group >
| Row width >




Fetch Alignment: Solutions

Solutions:

Compiler based static alignment
Hardware dynamic alignment

All the branch instructions

The static alignment:

All the target instructions should start f

i ,

Must be placed here

rom O™ location




Fetch Alignment: Solutions

Size of fetch group < Cache line size

00 01 10 11
.=——-| Single Cache line




Fetch Limits Due to Branch

Size of fetch group < Cache line size

00 01 10 11
TAG ADD  JMP MOV SHFT

\J \/
ADD JMP Unused fetch



Instruction Fetch: IBM RS/6000

IBM RS/6000 Instruction cache architecture:

- 2 —way set associative I-Cache with a line size of 16
Instructions (64 bytes)

- Each row of the I-Cache stores 4 associative sets (two
per set) of instructions

- Each line of I-cache spans four physical rows

- Physical I-cache array is actually composed of 4
Independent sub-arrays

- One instruction can be accessed form one array



|-Cache Fetch Hardware: RS/6000
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Superscalar Pipeline Stages
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Challenges in Decoding

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2| ....

* Primary Tasks
* ldentify individual instructions (!)

* Determine instruction types
* Determine dependences between Instructions (one

of the most challenging tasks)

* Two important factors
* Instruction set architecture

* Pipeline width



Pentium Pro Fetch/Decode
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Pre-decoding in AMD

- To simplify the decoding logic
- To avoid repeated decoding

From memory

8 instruction bytes i fhf —————————=—

Predecode logic

8 instruction bytes + predecode bits ] 64 + 40 =====--

[-Cache

16 instruction bytes + predecode bits | 128 + 80

Decode, translate,
and dispatch

Upto4 ROPs ROPI ROP2Z ROP3 ROP4

Bytel | Byvte2 | ==+ | Byte8

3 buts 3 bits 3 bits




Dependency Check and Resolve

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2 | ....

Problems:

- Data (operand/registers) dependency

Solutions:

Score-board
Tomasulo's Algorithm
(dynamic scheduling)



Instruction Dispatching

IF | Decode | Operand Fetch | Dispatch | Other stage 1 | other stage 2| ....

* Diversified pipeline: Multiple functional units

* Different type instructions executed by different
Functional units

* Distributed control
* Operands are fetched from Register File
* Operands may not be ready yet

°* Reservation station for instructions to be executed



Instruction Dispatch and Issue

* Parallel pipeline
* Centralized instruction fetch
* Centralized instruction decode

* Diversified pipeline (dynamic superscalar)
* Distributed instruction execution



Necessity of Instruction Dispatch

Condition for Dispatch: ﬂ

1) Decoding is completed Instruction fetching

2) Registers data are read from the
register file
3) Whether execution units is/are free

Takes instruction from Dispatch buffer,
dispatch them to execution units

If execution units is/are ‘< ¥
not free? ~




Centralized Reservation Station

Instructions can wait!
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Distributed Reservation Station
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Instruction Execution

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 | ....

The next challenge is to execute the dispatched instructions, objective is
performance improvement.

How to decide the size of reservation station?
What type of execution units are necessary?
How many execution of each type is needed?
How many branch unit is desirable?

How many load/store unit is desirable?

How many ALU is needed

How many FP unit is needed?

Why these are such a big issues? Think of program diversity!



Instruction Execution

IF | Decode | Operand Fetch | Dispatch | Execution | other stage 2 | ....

The answer:

- Workload needs to be analyzed
- The port numbers of Register file and D-Cache Matters.

- Wherever there is limitation in ports, the execution
needs to be serialized

- Inter-functional unit data sharing network
(for data forwarding)



Completion/Retirement
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Challenges in Superscalar Processor
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Superscalar Technigues

We will discuss in detail, now, the solution for each stages!

The ultimate performance goal of a superscalar
pipeline is to achieve maximum throughput of
Instruction processing

Instruction processing involves

* Instruction flow — Branch instructions
* Register data flow — ALU instructions
*  Memory data flow — L/S instructions

Max Throughput — Min (Branch, ALU, Load penalty)



Superscalar Challenges
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Instruction Flow

* Goal of Instruction Flow

— Supply processor with maximum number of useful
Instructions every clock cycle

— To be able to fetch n instructions every cycle

* Impediments
— Branches and jumps

— Finite I-Cache
* Capacity (on cache miss, the fetch has to stall)
* Bandwidth restrictions
(how many instruction can be read in a single clock cycle)



Branch Types and Implementation

1. Types of Branches
A. Conditional or Unconditional
B. Save PC?
C. How is target computed?

Single target (immediate, PC + immediate)
Multiple targets (register)

2. Branch Architectures

A. Condition code or condition registers
B. Register



Branches - PowerPC

Example of branch instructions from PowerPC

Instructions Micro-operations/signals
Branch (unconditional, no save PC, PC+imm)
Branch absolute (uncond, no save PC, imm)
Branch and link (uncond, save PC, PC+imm)
Branch abs and link (uncond, save PC, imm)

Branch conditional (conditional, no save PC, PC+imm)
Branch cond abs (cond, no save PC, imm)

Branch cond and link (cond, save PC, PC+imm)

Branch cond abs and link (cond, save PC, imm)

Branch cond to link register (cond, don’t save PC, reQ)

Branch cond to link reg and link  (cond, save PC, req)

Branch cond to count reg (cond, don’t save PC, reQ)

Branch cond to count reg and link (cond, save PC, req)



Branches - DEC Alpha

Alpha: 3 Types of Branches

Conditional branch (cond, no save PC, PC+imm)
Bxx Ra, disp

Unconditional branch (uncond, Save PC, PC+imm)
Br Ra, disp

Jumps (uncond, save PC, Register)
J Ra



Branches - MIPS

MIPS Instruction Set

6 Types of Branches

Instructions Micro-operations/signals
Jump (uncond, no save PC, imm)
Jump and link (uncond, save PC, imm)
Jump register (uncond, no save PC, register)
Jump and link register (uncond, save PC, register)
Branch (conditional, no save PC, PC+imm)

Branch and link (conditional, save PC, PC+imm)



Difficulty of Branch Instruction

They severely affects the performance, primarily due to irregular program
flow.

Effects of Branches
* Fragmentation of I-Cache lines
* Need to determine branch direction
* Need to determine branch target

* Use up execution resources

* Pipeline drain/fill



Control Flow of a Program
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Program Control Flow

* Implicit Sequential Control Flow

— Static Program Representation
* Control Flow Graph (CFG)
— Nodes = basic blocks
— Edges = Control flow transfers

— Physical Program Layout
* Mapping of CFG to linear program memory
* Implied sequential control flow
— Dynamic Program Execution
* Traversal of the CFG nodes and edges (e.g. loops)
* Traversal dictated by branch conditions
— Dynamic Control Flow
* Deviates from sequential control flow

* Disrupts sequential fetching
* Can stall IF stage and reduce I-fetch bandwidth



Disruption of Sequential Control Flow
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Branch Prediction

* Condition resolution | Condition speculation
— Access regqister:
* Condition code register, General purpose register
— Perform calculation:
* Comparison of data register(s)

* Target address generation | Target Speculation
— Access reqister:
* PC, General purpose register, Link register
— Perform calculation:
* +/- offset, autoincrement, autodecrement



Target Address Generation
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Solving Target Address Generation

Can | predict the target address during the fetch stage itself?

This would solve (delayed) address generation penalty!

HOW?



Branch/Jump Target Prediction

Branch target buffer (BTB)

Access Branch instruction Branch target
I-cache address (BIA) field  address (BTA) field
Access '
BTB
BIA BTA
PC
(instruction
fetch address) ,_
) Speculative

mmmmmmmmmmmmmmmmmmmmmm target address
(Used as the new PC if branch is predicted taken)

* Branch Target Buffer: small cache in fetch stage

— Previously executed branches, address, taken history, target(s)
* Fetch stage compares current FA against BTB

— If match, use prediction
— If predict taken, use BTB target
* When branch executes, BTB is updated
* Optimization:
— Size of BTB: increases hit rate
— Prediction algorithm: increase accuracy of prediction



Dynamic Branch Prediction

* Main advantages:

— Learn branch behavior autonomously
* No compiler analysis, heuristics, or profiling

— Adapt to changing branch behavior
* Program phase changes branch behavior

* First proposed in 1979-1980

— US Patent #4,370,711, Branch predictor using
random access memory, James. E. Smith

* Continually refined since then



Branch Instruction Speculation
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Branch Instruction Speculation

- Simplest predictor:

- just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor
- Tournament predictor



Branch Instruction Speculation

Implementation of 2 -bit predictor and extension
to advance predictor.

Branch instruction  Branch target Branch
I-cache address field address field history

BTB

BIA BTA

Initial '_ﬂ
state .
Speculative Y ¥

target address FSM

Prf:diclled \ Predict taken
direction  Actyal direction or not taken

Branch
history

State-transition diagram Implementation using BTB



Recovery from Misprediction

The predicted path:

The important thing is the TAG

Recovery from wrong prediction:




Branch Instruction Speculation

- Simplest predictor: Just predict not taken
- 1-bit predictor
- 2-bit predictor

- Advance predictors:
- Correlating predictor
- Tournament predictor

Next Lecture: Prediction



Thank You
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