The Main Memory Technology, Organization and Architecture

Computer System Architecture (CS5202) IIT Tirupati

> Jaynarayan t tudu jtt@iittp.ac.in 17th March 2020

Memory Cell: storing a bit

- 1) Address decode
- 2) Drive row select
- 3) Selected bit-cells drive bitlines
- 4) Sense amplifier senses the bit difference
- 5) Column address decode and select
- 6) Pre-charge all the bitlines for next read/write

The same structure can be replicated for simultaneous read or write of multiple data

Step 2 and 3 dominates the access time, Step 2, 3 and 5 dominates the cycle time

Memory Cell: storing a bit

- 1) Row address decode from RAS
- 2) Drive row select
- 3) Selected bit-cells drive bitlines
- 4) Sense amplifier senses the bit difference
- 5) Column address decode from CAS and select
- 6) Pre-charge all the bitlines for next read/write

DRAM Memory Array

RAS: Row Address Strobe CAS: Column Address Strobe

The same structure can be replicated for simultaneous read or write of multiple data

Refresh: Needed to restore the charge stored in capacitor. This has to be done peridically (typically 10s of ms)

SRAM compared to DRAM

- SRAM
 - Used for L1, L2 caches and reg file
 - Fast access
 - No refresh
 - Lower density
 - To store a single bit needs 6 transistor
 - Higher cost

• DRAM

- Main memory
- Higher access time
- Refreshing required
- Higher capacity
- Higher density
 - To store a single bit just 1 tran and 1 cap
- Cost per bit less

SRAM: Static Random Access Memory DRAM: Dynamic Random Access Memory

DRAM/Main Memory Organization

Channel DIMM Rank Bank (Chip) **Memory Array Row/Column** Memory Cell **Transistor/Capacitor**

Memory Array: Storing a set of bits

Bank: Multiple Memory Array

x2 DRAM

x4 DRAM

x8 DRAM

x2 DRAM: by two DRAM array. It can outputs 2 bits at a time. x4 DRAM can output 4 bits and X8 DRAM can output 8 bits at a time

Bank: Multiple Memory Array

- x8 DRAM organization: at a time a byte of data can be read out or written into. Such organization is called Bank.
- Multiple bank can be organized for larger size of DRAM

Chip: Multiple Banks

- 8 banks are organized into a single chip
- At a time 8 bits of data can read out and write in

Rank: Organization of Multiple Chips

- Increasing the bandwidth to 64 bits (8 bytes)
- A single Rank can be formed by organizing multiple DRAM chips

Rank: Organization of Multiple Chips

- Increasing the bandwidth to 64 bits (8 bytes)
- A single Rank can be formed by organizing multiple DRAM chips

Organization of Multiple Ranks

- Address and command (Addr/Cmd) to locate the 8 bits data in memory bank
- CS <0:1> is chip select line to select all the chips in a Rank
- Data <0:63>: Data bus getting readout data from either of the Ranks

Organization of Multiple Ranks into DIMM

- Each Rank is having 8 chips
- Mounted back-to-back for form a DIMM

Channel: Organization of Multiple DIMMs

- Two DIMMs in a single channel
- Two channels connected to i7 core processor

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits

Cache block is the same as the Cache block

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

The next set of 8B will Be transferred from **Col1**

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

The next 8B is transferred

- To transfer 64B it takes 8 I/O cycles
- Each 8B at a single cycle

Concept of Interleaving

Without Bank

Interleaving with Bank Word 0 Bank 0 Bank 1 Bank n Word 1 Word 2 Block 0 word n-1 word 0 word 1 word 2n-1 word n+1word n word 3n-1 word 2n word 2n+1Block 1 Addressing: Word 0 is located in Bank (0 mod n) Word n is located in Bank (n mod n) Word 0 in Bank 0 is located at (0 div n) place Word n in Bank 0 is located at (n div n) place Block m Increase in Bandwidth: Word n All the banks can be accessed in interleaved fashion

Bank 1 need not wait for Bank 0 to finish

Addressing in Bank

Addressing in Bank

Addressing in Bank

Address Mapping in Single Channel

Example: A Single channel system with 8 byte memory bus, 2GB memory, 8 banks, 16K row and 2K columns per bank

Row Interleaving:

Consecutive rows of memory in consecutive banks

16K = 2^14 rows 8 banks = 2^3 banks 2K Col = 2^11 columns Byte addressable = 2^3 bits offset

Row: 14 bits	Bank: 3 bits	Column: 11 bits	Offset: 3 bits
Row 0 Bank 0 Row 0 Bank 0	Col 0 Col 1	Row 1 Ban Row 1 Ban	k 0 Col 0 k 0 Col 1
Row 0 Bank 0	Col 2047	Row 1 Ban	k 0 Col 2047
Row 0 Bank 1 Row 0 Bank 1	Col 0 Col 1	Row 1 Ban Row 1 Ban	k 1 Col 0 k 1 Col 1
Row 0 Bank 1	Col 2047	Row 1 Ban	k 1 Col 2047

Address Mapping in Single Channel

Example: A Single channel system with 8 byte memory bus, 2GB memory, 8 banks, 16K row and 2K columns per bank

Block Interleaving:

- Consecutive cache block addresses in consecutive banks.
- 64 byte block

16K = 2^14 rows 8 banks = 2^3 banks 2K Col = 2^11 columns Byte addressable = 2^3 bits offset

Row: 14 bits	High Col: 8 bits	Bank: 3 bits	Low Col: 3 bits	Offset: 3 bits
Rov Rov	v 0 Bank 0 Co v 0 Bank 0 Co	ol 0 ol 1	Row 0 Bank 0 - Row 0 Bank 0 -	Col 8 Col 9
Rov	v 0 Bank 0 Co	 ol 7	Row 0 Bank 0 -	Col 15
Rov Rov	v 0 Bank 1 Co v 0 Bank 1 Co	ol 0 ol 1	Row 0 Bank 1 - Row 0 Bank 1 -	Col 8 Col 9
Rov	v 0 Bank 1 Co	 ol 7	Row 0 Bank 1 -	Col 15

Address Mapping in Multi Channel

Example: A Multi-channel system with 8 byte memory bus, 2GB memory, 8 banks, 16K row and 2K columns per bank

Row Interleaving:

Consecutive rows of memory in consecutive banks

16K = 2^14 rows 8 banks = 2^3 banks 2K Col = 2^11 columns Byte addressable = 2^3 bits offset

Chanel: 1 bit	Row: 14 bits	Bank: 3 bits	Column: 11 bits	Offset: 3 bits
Row: 14 bits	Chanel: 1 bit	Bank: 3 bits	Column: 11 bits	Offset: 3 bits
Row: 14 bits	Bank: 3 bits	Chanel: 1 bit	Column: 11 bits	Offset: 3 bits
Row: 14 bits	Bank: 3 bits	Column: 11 bit	s Chanel: 1 bit	Offset: 3 bits

Address Mapping in Multi Channel

Example: A Multi-channel system with 8 byte memory bus, 2GB memory, 8 banks, 16K row and 2K columns per bank

Block Interleaving:

- Consecutive cache block addresses in consecutive banks.
- 64 byte block

16K = 2^14 rows 8 banks = 2^3 banks 2K Col = 2^11 columns Byte addressable = 2^3 bits offset

Ch: 1bit	Row	: 14 bits	High Col: 8 bits	Bank: 3 bits	Low Col: 3 bits	Offset: 3 bits
Row: 14 I	oits	Ch: 1bit	High Col: 8 bits	Bank: 3 bits	Low Col: 3 bits	Offset: 3 bits

Reference:

Chapter 13, Memory Systems: Cache, DRAM, Dsik; Bruce Jacob et al

What Next in Main Memory

Technology: [ITRS 2015 Report]

What Next in Main Memory

Architectural Ideas:

- In-memory computation:
 - Bring computation to memory instead of taking data to computation
- Think of bringing an additional hierarchy with non-volatile memory
 - Adaptive or application specific memory hierarchy
- Increase on-chip memory

A nice trend road-map for next research in memory:

https://ece.umd.edu/~blj/talks/Sun-Workshop.pdf

Reading Materials

- Bruce Jacob, Spencer Ng, and David Wang; *Memory Systems: Cache, DRAM, Disk;* 2008, Elesevier. (Refer: Chapter 10 and Chapter 8)
- Onur Mutlu, Scalable Memory System Lectures, Lecture 1, Lecture 2 and Lecture 3; http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
- Text Book (H&P): Memory Technology and Optimization

Thank You

Additional Pages