The Main Memory Technology, Organization and Architecture

Computer System Architecture (CS5202)
IIT Tirupati

Jaynarayan t tudu
jtt@iittp.ac.in
$17^{\text {th }}$ March 2020

Memory Cell: storing a bit

SRAM Cell (6 Transistors cell)

1) Address decode
2) Drive row select
3) Selected bit-cells drive bitlines
4) Sense amplifier senses the bit difference
5) Column address decode and select
6) Pre-charge all the bitlines for next read/write

SRAM Memory Array

The same structure can be replicated for simultaneous read or write of multiple data

Step 2 and 3 dominates the access time, Step 2, 3 and 5 dominates the cycle time

Memory Cell: storing a bit

DRAM Cell (1 transistor +1 capacitor) [Dynamic RAM]

1) Row address decode from RAS
2) Drive row select
3) Selected bit-cells drive bitlines
4) Sense amplifier senses the bit difference
5) Column address decode from CAS and select
6) Pre-charge all the bitlines for next read/write

DRAM Memory Array

RAS: Row Address Strobe
CAS: Column Address Strobe
The same structure can be replicated for simultaneous read or write of multiple data

Refresh: Needed to restore the charge stored in capacitor.
This has to be done peridically (typically 10s of ms)

SRAM compared to DRAM

- SRAM
- Used for L1, L2 caches and reg file
- Fast access
- No refresh
- Lower density
- To store a single bit needs 6 transistor
- Higher cost
- DRAM
- Main memory
- Higher access time
- Refreshing required
- Higher capacity
- Higher density
- To store a single bit just 1 tran and 1 cap
- Cost per bit less

DRAM/Main Memory Organization

Channel
DIMM
Rank
Bank (Chip)
Memory Array
Row/Column
Memory Cell
Transistor/Capacitor

Memory Array: Storing a set of bits

Bank: Multiple Memory Array

x2 DRAM

x4 DRAM

x8 DRAM
x2 DRAM: by two DRAM array. It can outputs 2 bits at a time.
x4 DRAM can output 4 bits and
X8 DRAM can output 8 bits at a time

Bank: Multiple Memory Array

- x8 DRAM organization: at a time a byte of data can be read out or written into. Such organization is called Bank.
- Multiple bank can be organized for larger size of DRAM

Chip: Multiple Banks

- 8 banks are organized into a single chip
- At a time 8 bits of data can read out and write in

Rank: Organization of Multiple Chips

- Increasing the bandwidth to 64 bits (8 bytes)
- A single Rank can be formed by organizing multiple DRAM chips

Rank: Organization of Multiple Chips

- Increasing the bandwidth to 64 bits (8 bytes)
- A single Rank can be formed by organizing multiple DRAM chips

Organization of Multiple Ranks

Rank

- Address and command (Addr/Cmd) to locate the 8 bits data in memory bank
- CS <0:1> is chip select line to select all the chips in a Rank
- Data <0:63>: Data bus getting readout data from either of the Ranks

Organization of Multiple Ranks into DIMM

- Each Rank is having 8 chips
- Mounted back-to-back for form a DIMM

Channel: Organization of Multiple DIMMs

- Two DIMMs in a single channel
- Two channels connected to i7 core processor

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte

Cache block is the same as the Cache block

- Channel Bandwidth: 64 bits

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte
- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

The next set of 8 B will
Be transferred from Coll

Block Transfer: Address to Device Mapping

Physical Address Space

- Cache block size = 64 Byte

The next 8B is transferred

- Channel Bandwidth: 64 bits
- A Rank is having 8 DRAM Chips (Chip 0 to 7)
- 64 bits to be transferred in a memory cycle

Block Transfer: Address to Device Mapping

Physical Address Space

- To transfer 64B it takes 8 I/O cycles
- Each 8B at a single cycle

Concept of Interleaving

Without Bank

Word 0
Word 1
Word 2

Word n

Interleaving with Bank

Bank 0	Bank 1
word 0	word 1
word n	word $n+1$
word $2 n$	word $2 n+1$

Bank n
word $n-1$
word $2 n-1$
word $3 n-1$

Addressing:
Word 0 is located in Bank $(0 \bmod n)$
Word n is located in Bank $(\mathrm{n} \bmod \mathrm{n})$
Word 0 in Bank 0 is located at (0 div n) place Word n in Bank 0 is located at (n div n) place
Block m

Increase in Bandwidth:

- All the banks can be accessed in interleaved fashion
- Bank 1 need not wait for Bank 0 to finish

Addressing in Bank

Addressing in Bank

- A bank is addressed with Row and Column number
- A column reads out a 1B of data for byte addressable
- Whether 1 B or 2 B depends on design

Example: Row-major addressing

$<$ Row 0, Column 0>
$<$ Row 0, Column 1>
<Row 0, Column 2>
<Row 0, Column 3>
<Row 1, Column 0>
<Row 1, Column 1>
<Row 1, Column 2>
<Row 1, Column 3>
<Row n, Column 0>
<Row n, Column 1>
<Row n, Column 2>
<Rown, Column 3>

Addressing in Bank

- A bank is addressed with Row and Column number
- A column reads out a 1B of data for byte addressable
- Whether 1 B or 2 B depends on design

Example: Column-major addressing
<Row 0, Column 0>
<Row 1, Column 0>
<Row 2, Column 0>
<Row 3, Column 0>
<Row 4, Column 0>
<Row 5, Column 0>
<Row 6, Column 0>
<Row 7, Column 0>
<Row n-3, Column 0>
<Row n-2, Column 0>
<Row n-1, Column 0>
<Rown, Column 0>

	C0	C1	C2	C3
R0				
R1				
R2				
R3				
Rn				

Address Mapping in Single Channel

Example: A Single channel system with 8 byte memory bus, 2GB memory, 8 banks, 16 K row and 2 K columns per bank

Row Interleaving:

Consecutive rows of memory in consecutive banks
$16 \mathrm{~K}=2^{\wedge} 14$ rows
8 banks = 2^3 banks
$2 \mathrm{~K} \mathrm{Col}=2^{\wedge} 11$ columns
Byte addressable $=2^{\wedge} 3$ bits offset

Address Mapping in Single Channel

Example: A Single channel system with 8 byte memory bus, 2GB memory, 8 banks, 16K row and 2 K columns per bank

Block Interleaving:

- Consecutive cache block addresses in consecutive banks.
- 64 byte block
$16 \mathrm{~K}=2^{\wedge} 14$ rows
8 banks = 2^3 banks
$2 \mathrm{~K} \mathrm{Col}=2^{\wedge} 11$ columns
Byte addressable $=2^{\wedge} 3$ bits offset

Row: 14 bits High Col: 8 bits Bank: 3 bits Low Col: 3 bits Offset: 3 bits

Row 0 ---- Bank 0 ---- Col 0	Row 0 ---- Bank 0 ---- Col 8
Row 0 ---- Bank 0 ---- Col 1	Row 0 ---- Bank 0 ---- Col 9
Row 0 ---- Bank 0 ---- Col 7	Row 0 ---- Bank 0 ---- Col 15
Row 0 ---- Bank 1 ---- Col 0	Row 0 ---- Bank 1 ---- Col 8
Row 0 ---- Bank 1 ---- Col 1	Row 0 ---- Bank 1 ---- Col 9
Row 0 ---- Bank 1 ---- Col 7	Row 0 ---- Bank 1 ---- Col 15

Address Mapping in Multi Channel

Example: A Multi-channel system with 8 byte memory bus, 2GB memory, 8 banks, 16 K row and 2 K columns per bank

Row Interleaving:
Consecutive rows of memory in consecutive banks

$$
16 \mathrm{~K}=2^{\wedge} 14 \text { rows }
$$

8 banks = 2^3 banks
$2 \mathrm{~K} \mathrm{Col}=2^{\wedge} 11$ columns
Byte addressable $=2^{\wedge} 3$ bits offset
Chanel: 1 bit Row: 14 bits Bank: 3 bits Column: 11 bits Offset: 3 bits
Row: 14 bits Chanel: 1 bit Bank: 3 bits Column: 11 bits Offset: 3 bits
Row: 14 bits Bank: 3 bits Chanel: 1 bit Column: 11 bits Offset: 3 bits
Row: 14 bits Bank: 3 bits Column: 11 bits Chanel: 1 bit Offset: $\mathbf{3}$ bits

Address Mapping in Multi Channel

Example: A Multi-channel system with 8 byte memory bus, 2GB memory, 8 banks, 16 K row and 2 K columns per bank

Block Interleaving:

- Consecutive cache block addresses in consecutive banks.
- 64 byte block
$16 \mathrm{~K}=2^{\wedge} 14$ rows
8 banks = 2^3 banks
$2 \mathrm{~K} \mathrm{Col}=2^{\wedge} 11$ columns
Byte addressable $=2^{\wedge} 3$ bits offset
Ch: 1 bit Row: 14 bits High Col: 8 bits Bank: 3 bits Low Col: 3 bits Offset: 3 bits

Row: 14 bits Ch: 1 bit High Col: 8 bits Bank: 3 bits Low Col: 3 bits Offset: 3 bits

Reference:
Chapter 13, Memory Systems: Cache, DRAM, Dsik; Bruce Jacob et al

What Next in Main Memory

Technology: [ITRS 2015 Report]

What Next in Main Memory

Architectural Ideas:

- In-memory computation:
- Bring computation to memory instead of taking data to computation
- Think of bringing an additional hierarchy with non-volatile memory
- Adaptive or application specific memory hierarchy
- Increase on-chip memory

A nice trend road-map for next research in memory:
https://ece.umd.edu/~blj/talks/Sun-Workshop.pdf

Reading Materials

- Bruce Jacob, Spencer Ng, and David Wang; Memory Systems: Cache, DRAM, Disk; 2008, Elesevier. (Refer: Chapter 10 and Chapter 8)
- Onur Mutlu, Scalable Memory System Lectures, Lecture 1, Lecture 2 and Lecture 3; http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
- Text Book (H\&P): Memory Technology and Optimization

Additional Pages

