
Indian Institute of Technology Tirupati
Computer System Architecture (CS5202)
Term Projects

[Max marks: 30][Due: April, 2020]

Instructions: You need to chose any of the projects from the given list. The list contains project of
different nature. Each projects carry the same value in terms of marks. The choice is given such that
best of your capability will be tested based on the outcome of the project.

1 Development and Design Project

1.1 Project 1

Problem: Development of a trace driven cache memory simulator
Group size: 2
Programming Language: C/C++/Java

Description: A cache memory simulator need to be designed as part of this project. It will be a trace
driven simulator. The input to the simulator will be a trace file and a configuration file. The trace file
contains a trace of physical address of each of instruction, next instruction, and an address of data. The
format of trace file is provided in the Example 1, where the first address is the physical address of current
instruction, next address is the physical address of next instruction, and the next field is data address if
the data is located in memory or it is # if the data is non-memory type.

The simulator is expected to read from the trace file and perform the three primary function of cache
placement, locate, and replacement. As part of the simulator design, it is expected to implement the
desired algorithms for each of these functions. The simulator should be configurable by the user using
the input configuration file. The configuration file contain the information about the essential parame-
ters of cache architecture. Some of the essential parameters include cache memory size, block size, set
size, mapping technique, replacement policies among others. As part of this project you are expected to
design simulator for Level 1 cache. However, as bonus, you are encouraged to do the multilevel cache
simulator.

Example 1: Trace and Configuration files

cache trace file.trc

//begining of file

// double slash for comment line

1000 1004 4001

1004 1008 #

.............

.............

//end of file

cache configure.cfg

//beginig of file

// double slash for comment line

cache_size = 2 MB

block_size = 65 B

word_size = 4 B

mapping = 0 // mapping: direct map 0, set associative 1, fully associative 2

1



.............

.............

//end of file

Simulator Output: The simulator is suppose to generate sufficient number of statistics for the purpose
of cache architecture study and research. Towards this the designer is expected to produce sufficient
number of statistics on different parameters. The most important statistic being the total numer of
cache reference, total miss, and total hit.

Project Outcome: A complete working simulator, a set of test case, implementation of one of the real
life cache memories (example cache of i5, i7, or ARM A8).

1.2 Project 2

Problem: Implementation of superscalar scheduling algorithm (tomasulo algorithm)
Group size: 3
Programming Language: C/C++/Java

Description: The super-scalar architecture (to be precise it is a micro-architecture) is one of the in-
struction level parallelism methodology which build upon the pipeline architecture. One of the features of
super-scalar architecture is out-of-order execution of instructions. To manage the out-of-order execution
of instructions a dynamic scheduling algorithm is used which is originally called as Tomasulo’s algorithm.
The algorithm is being implemented in hardware using several components. The hardware design contain
and manages the component such as reservation station, scheduler, reorder buffer, register file, load-store
queue, and global data bus (common data bus). The important functionality of the algorithm is to take
care of the data hazards: RAW, WAW, WAR, RAR. Unlike the traditional rigid in-order pipeline, for
out-of-order super-scalar architecture all the three data hazards need to be handled: RAW, WAW, and
WAR. The RAR does not affect the correctness of execution. For more detail you are advised to go
through Chapter 3 of the text book.

In this project You need to design a trace driven simulator that simulate the behavior of Tomasulo’s
algorithm. The simulator need to capture the behavior of super-scalar processor from reservation station
onwards to reorder buffer. As a bonus effort you may simulate the fetch and decode as well. However, it
is not expected. It is very important to note that the simulator is a behavior simulator which works on
the program trace as input. I have given you the format of trace file which captures necessary information
about the program. The trace file contain physical address, instruction type (Integer ALU, Load, Store,
and Branch), registers to read, a register to write. Based on these information (which we call as trace)
the simulator suppose to schedule the instructions which are currently waiting in the reservation station
to the execution units in out-of-order and then finish the execution in out-of-order with the help of
reorder buffer. Finally, the register file has to be updated in program order. While doing all these
functionality the important task is to check whether the registers to read is updated with the correct
value or not. Note here that the simulator does not need to simulate the content of the register as such
but the updated status of the register.

The simulator design should be such that it should be flexible enough to be configured using the
configuration file. The configuration should be made in the sizes of each of the unit, number of execution
units, sizes of common data bus, number of ports in the register file among others. It is strongly advised
to study the Tomasulo’s algorithm for much clarity. Innovation and addressing new problems in the
existing algorithm could be considered as novel contribution of the project.

Simulator Output: The simulator must generate good number of statistics for architectural analysis.

Project Outcome: Working simulator with test cases. Preparing a trace file from the standard bench
mark program would be added advantage.

2



1.3 Project 3

Problem: Study of Geometric Branch Predictor and Designing of Simulator
Group size: 2
Language: C/C++/Java

Description: Branch prediction has been one of the active research problems since last decade. In
the pipeline architecture where the branch instruction get executed at the deeper stage of pipeline it is
utmost necessary to know the program control flow. The advance knowledge of the program control flow
helps in fetching the desired instruction and thereby save the pipeline clock cycles. However, knowing
the program flow in advance is challenging task particularly for the conditional branch instructions.
Therefore, the only way to know in advance is by prediction mechanism. The branch predictor simply
predicts in advance, right at the instruction fetch stage using the BTB, the branch outcome, as either
taken or not-taken. Based on this prediction of take or not-taken the next instruction is being fetched.

In this project the objective is to study the geometric branch predictor [?] using the help of simulator.
The project expect innovation in terms of improving prediction accuracy, reducing hardware overhead
and reducing dynamic power consumption. A trace based simulator need to be designed for the existing
geometric predictor and the same is to extended for the novel predictor which you are expected to
design. The simulator would take a traces of branch instructions as input and carry out the simulation
accordingly. The trace file consists of physical address of the branch instruction, branch condition
outcome, and the target address. The trace file format could differ for the different simulator design.
The one which is provided here is designed by our team. However, you are free to use the different format
as per your suitability. More trace file could be found in the Geometric paper [?].

The simulator must be configurable using the configuration file. The configuration should be as flex-
ible as possible to allow the changes in history size, tag size among others.

Simulator Output: The simulator should provide the statistics on prediction accuracy. It should pro-
vide the finer detail such as prediction accuracy for each instruction and prediction accuracy of taken
branch and not-taken branch.

Project Outcome: Fully working simulator, additional features to improve the prediction accuracy,
trace file format, and configuration file. The test case trace file should resemble one of the real life
program either from benchmark suit or from open source repository such as Sorting, Graphs etc.

trace file.trc

//begining of file

//physical address ----- Branch status ----- Target Address

//of instruction ----- after executn

AAAA000B 0 (nottaken) BB00000A

AACA000B 1 (taken) BB000C0B

ACCA000B 0 BB000D0B

ABBA000B 0 BB000E0B

//end ofile

configuration file.cfg

//begining of file

//This is configuration file format, you could chose to have different format.

size_of_history = 1000 entry ;

base_predictor_size = 2 bit ;

tag_size = k bit ;

.................. ;

.................. ;

//end of file

3



1.4 Project 5

Problem: Smart Translation look aside buffer (S-TLB)
Group size: 2
Implementation: By use of simulator
Language: C/C++/Java

Description: The important functionality of TLB (translation look-aside buffer) is to map the virtual
address with corresponding physical address. As the processor generate a request for instruction or data
in the form of virtual address, the memory management unit ensure to locate the requested word in
the main memory and serve it to the processor via memory hierarchy. All these functionality requires a
translation of virtual address into physical address which is being done by TLB. Along with the adress
translation the TLB also keep track of other information related to the page. Among the informations are
read/write protection, user/supervisor mode, valid bit and others. The TLB is kind of cache memory.
The memory management unit explicitly uses for address translation. The TLB usually has a fixed
number of entry to it.

The objective of this project is to design a smart TLB which has adaptive feature in it. The motivation
behind adaptive TLB design is to experiment on the appropriate size (in terms of number of entry) of
the TLB. The design should be such that as needed the size should be shrinkable to less number of entry.
Which means that if the TLB design has maximum of 40 entry and currently only 20 entry is being used
and is sufficient for the current process, the remaining 20 entry should be turned off for power saving.
And, whenever there is increase in TLB demand the remaining 20 entry should be made available for
use.

The second motivation is to design a translation mechanism with more than one TLBs. There will
be one TLB that is fixed for the purpose of address translation however the remaining will be used in
shared mode. As per the need of program the remaining TLB can either be used data cache or can be
used as TLB. The idea here is to improve the level 1 hit rate.

The experimental work in this project can be carried out in two ways: either by writing your own
simulator (you can write a trace driven simulator) or by modifying the existing simulator such as CACTI.
You may explore simplescalar simulator as well. If you are writing your own simulator, then decide on
the trace file format and configuration file. To think about the trace file format, you can consider the
page request that being generated by processor as virtual address.

Simulator output: There are two things to evaluate: first one is TLB hit and miss, the second one is
how much power is being saved by turning off the part of TLB, and how much space is being appended
to level 1 data cache. (To note: you need not implement data cache, what is expected is the space being
saved.)

Project outcome: The project need to be demonstrated completely. If the project has been imple-
mented with the existing simulator, then the portion of code that has been used for implementation need
to be demonstrated. If the project has been implemented with your own simulator, it is expected that
you need to design your own format for trace and configuration files.

1.5 Project 6

Problem: Cache coherence protocol and L3 cache
Group size: 2
Language: C/C++/Java

Description: The importance of cache coherence protocol comes when a multiple processor access a
common location for the purpose of read and write. The ensure the consistent sharing of common
data, it is essential to manage the read and write sequence among the participating processors using a
set of rules. These set of rules form a coherence protocol. In the modern multi-processor architecture
generally the L3 cache is shared among the multiple processors and therefore the cache coherence protocol
is generally applicable to L3 cache. The protocol ensures the consistence communication among the
multiple processors such that each processor would find the valid data when it access. This project

4



considers the centralized shared memory based multiprocessor architecture.
The objective of this project is to design a simulator for the L3 cache incorporating the snooping

cache coherence protocol. Assuming an n number of processors sharing a L3 cache, the simulator
should incorporate the way these processor need to communicate in order to pass the messages. The
message passing protocol need to be in accordance with the snooping protocol. One of the important
component of snooping protocol is the common bus system. Common bus is the medium through which
the communication takes place. The simulator need to implement the common bus. While implementing
the bus it is important to consider the contention kind of issues that may arise when more than one
processor would like to get access to the bus. This needs to be arbitrated. As part of this project work
it is expected to identify the limitations of the existing protocol and propose the new solution to it.

The simulation is based on the traces as input. Trace in this scenario could be the access request
from various processors. Each processor would generate a series of access request to a common location
at different point of time for either purpose of read or write. The simulator should be flexible enough to
be able to simulate the behavior of at least 64 processors, and cache memory with varying size of block
and total locations. For sake of simplicity you may consider direct map cache. Therefor, the simulator
need to be configurable according to the configuration file.

Implementation Hints: The simulator design need to consider the state-transition machine. The
protocol can be thought of as an state-transition machine where state represents the status of variables
and transition represents the events such as next request, miss, and hit. The simulator also need to
incorporate the clock tick to keep track of the event of interest.

Simulator output: The simulator should output the misses and their cause. How many time the buse
have remain idle and used? When we say use it mean it is being used for transmitting and not just
locking for future use.

Project outcome: Fully functional simulation with set of test cases. The test case should be able to
test all possible events in terms of read and write.

1.6 Project 7

Problem: Data dependency and Basic block Visualizer
Group size = 2
Programming Language: C/C++/Java

Description: This project involves to solve the two related problem: data dependency and basic block
identification. Design a to tool to find out the dependency among the instructions and draw an weighted
graph showing the dependency relationship in the program. The edge weight depicting in the dependency
graph depict the dependency distance and type of dependency where as the node depicts an instruction
and its relative program counter value. The graph should be in format that would be visualizable by
some existing tool.

The second part of the project involves designing of a similar tool that detects the exitence of ba-
sic block in a given assembly program. Given a assembly program, the task is to design a tool that
would determine the basic block present in the program and design a visualization tool to visualise the
relationship among the basic blocks using flow graph.

*The project would be further elaborated within two more days.

Tool output: The tool should output the dependency graphs and corresponding visualizer.

Project outcome: The expected outcome of the project would be a program that detects the depen-
dencies by parsing the assembly code, the visualizer tool, and a set of test cases from the live program
such as gcc, gdb etc.

Example:

Assembly program → parser → dependency/basicblock detector → graph generator → visualizer

5



1.7 Project 8

Problem: Main memory simulator for multi-bank system
Group size: 2
Language: C/C++/Java

Description: This project is to design a trace driven simulator for main memory multi-bank system.
The simulator should incorporate the follow features of the main memory:

- Implementation of multibank system

- Implementation of little and big endian

- memory be tested using set of read and write operations.

- if memory is full, it should raise memory full error/page fault

The simulator would accept a trace file as input and a configuration file to configure the simulator
to incorporate the features listed for varying sizes and number. More features better would be simulator
statistics.
Simulator output: The simulator should provide the statistics on access time, sequence of byte address
accessed, if there is any memory alignment problem.

* More information will be provided about the project by next two days.

1.8 Project 9

Problem: Optimal data structure of multi-level page table
Group size: 2
Language: C/C++

Description: Objective of this project to design an adaptive data structure (the word adaptive has been
used here very loosely, it means something can be changed dynamically based on some events.) that
would facilitate fast access to a page in the page table. Using that data structure, a page table simulator
need to be designed. The simulator would work on taking input as trace of the page request from
processor. Size of the page table entry, main memory size are important parameters among other. The
simulator design should also consider the simulation of main memory, page placement and replacement
as well (any policies of your choice could be implemented).

The adaptive data structure is something which is dynamically changeable as per the history of page
request that comes from processor. The simulator designed should be done with both the standard data
structure hierarchical tree structure and the new data structure.

*More description will be provided on this.

Simulator output: Statistics on number of memory access required to reach at the desired page,
number of page fault, maximum level of page table, total size of memory occupied by page table among
others.
Project outcome: A complete working simulator with test cases.

1.9 Project 10

Problem: In-order core with multiple threads
Group size: 2
Language: C/C++/Java

Description: The project is aimed at designing a simple in-order five stages pipeline simulator which
executes multiple thread. The pipeline architecture will be single entry, however, for a multiple threads.
When we say single entry it means from a particular thread the pipeline can fetch and execute only one
instruction at a time, whereas, the design is free to fetch and execute from other thread. The project

6



could possibly be extended to incorporate the thread-level out-of-order execution. The simulator can
be designed as trace driven by using trace file as input. The trace file should contain a sequence of
instruction trace with necessary information as current physical address, next progam counter address,
register to read, register to write, memory address to read and write.

Simulator output: The simulator is expected to generate a set of statistics on parameters such as
number of clock cycle to execute the instruction, number halt cycles due to wait for data, for simply city
you can consider unconditional branch only and assume that the jump address is available at fetch.

Project outcome: Working simulator with test cases.

*More description will be provided.

2 Analysis of the existing solutions/architecture

This is another set of projects you may chose to carryout. This set of projects are involved with sufficient
number of experiments. You need to have a good computer to run the simulations. The idea here is
to evaluate some of the methodology that has been proposed in the literature. The evaluation involves
preparing a experimental set-up, implementing the methodology in simulation environment, and then
performing appropriate experiments to collect the statistic on selected parameters on which the evaluation
will be carried out. The evaluation should leads to the conclusion on pros and cons of the methodology
or architecture under evaluation. This projects involves study of the paper, theoretical analysis of the
idea, methodology, experimental set up, experimental results, and finally the pros and cons of the paper.

An example problem is suggested here for your reference.

2.1 Project 1

Problem: Performance per watt analysis of the Intel i7 processor
Group Size: 2
Description: The project work study the performance per watt of Intel i7 processor. The objective
is to figure out the architectural and design shortcoming of the processor in providing the expected
performance per watt. The outcome of the i7 will be compared with the respective ideal processor
(theoretically best possible processor). The project will be carried out using the snipper simulator. The
project involves following important task with respect to experimental work:

• Study the architecture and micro-architecture of i7 processor.

• Learn the usage of sniper simulator.

• Prepare a configuration file for i7 processor

• Run simulation and record the results

Along with the above experimental work, the architecture need to analysed theoretically for perfor-
mance, power, and performance per watt.

3 Comparative study Project

This is another kind of project where a comparative study between more than one ideas (here idea
means paper) can be carried out. The nature of the project work is very similar to the Evaluation
project. However, this project involve comparative study of the papers. The paper chosen should be
addressing exactly the same problems but solution proposed are of different kind. For example, cache
performance improvement may be the problem of interest but solutions could be of different nature: one
is software approach to deal with the never used cache block other could be hardware approach such
as dead-block elimination. The comparative work involves the recreation of experimental set-up and
implementation.

7



3.1 Project 1

Papers: The original works on value prediction

1. Gabbay, F and Mendelson, A. Speculative Execution Based on Value Prediction. Technion TR-
1080, 1996.

2. Lipasti, M. H., and Shen, J. P. Exceeding the dataflow limit via value prediction. In Proc. Annual
International Symposium on Microarchitecture (MICRO), 1996.

You are advised to discuss the project once you chose the papers to compare before you proceed for
experiment, evaluation, comparison.

4 Solving existing problems

The computer architecture research have been primarily focused on the following three parameters:
Power problem, Performance per watt (improving performance at a given temperature), and reducing
hardware cost. When a specific component of the architecture being studied these three problems take
their own specific definition. For example when we take branch prediction what it means for improving
overall performance is reducing the miss prediction, optimizing the access time involved in BTB and
other related design.

This projects requires you to study the research papers and find out some of the existing problems.
Objective of the project is to propose a new solution which is expected to improve upon the existing
solution by reasonable numbers. For example, if you are solving the performance issues due to cache
memory, your solution should perform better by at least 5 - 10 % compared to the existing cache
architecture. Some of the papers are listed here for reference reading.

• A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das, Orchestrated
Scheduling and Prefetching for GPGPUs, In Proc. 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013

• Aamer Jaleel, Joseph Nuzman, Adrian Moga, Simon C. Steely Jr., Joel Emer, High performing
cache hierarchies for server workloads: Relaxing inclusion to capture the latency bene ts of exclusive
caches, In Proc. of the 21st International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2015

• Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson, Seth Pugsley,
Zeshan Chishti, Efficiently Prefetching Complex Address Patterns, 48th ACM/IEEE Annnual In-
ternational symposium on Microarchitecture (Micro 2015)

• M. K. Qureshi V. Srinivasan J. A. Rivers, Scalable High Performance Main Memory System Using
Phase-Change Memory Technology, ISCA 2009.

5 Identifying new research problem

This problem is highly challenging, it involves extensive knowledge of computer architecture. The new
problem could comes at different level of granularity. It has to be specific to some of the architectural
detail such as execution unit, register file, cache memory etc. If you are interested in this project, kindly
consult with instructor before proceeding further.

Some of the problem which are of current interest are listed here for further investigation:

• Application specific architecture to address power issues.

• Reducing the memory delay by introducing an intermediate level of memory using high speed flash
drive.

Some of the views and future direction papers are listed here for your reference.

8



• Shekhar Borkar and Andrew Chien, ‘The future of microprocessors‘, Communications of ACM, vol.
54, no. 5, May 2011

• Tilak Agerwala and S. Chatterjee, ‘Computer architecture: challenges and opportunities for the
next the decade‘, IEEE Micro, May-June 2005

• Mark Hill and Michael Marty, ‘Amdahl‘s law in the multi-core era‘, IEEE Computers, July 2008

• Dong Hyuk Woo et al., ‘Extending Amdahl‘s Law for Energy Efficient Computing in the Many
Core Era‘, IEEE Computers, Dec 2008

• 21st Century Computer Architecture, A community white paper, computing community consor-
tium, May 2012

• Luis Ceze, Mark D Hill, T F Weinisch, ‘Arch2030: A Vision of Computer Architecture Research
over the Next 15 Years‘, Computing Community Consortium, 2016.

References

[1] Andre Seznec et al, A case for (partially) TAgged Geometric History Length Branch Predictor, AI
Access Foundation and Morgan Kaufmaan Publishers, 2006

9


	Development and Design Project
	Project 1
	Project 2
	Project 3
	Project 5
	Project 6
	Project 7
	Project 8
	Project 9
	Project 10

	Analysis of the existing solutions/architecture
	Project 1

	Comparative study Project

