
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories

 Gives the allusion of a large, fast memory being presented to the
processor

Introduc tion

3Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy
Introduc tion

4Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Performance Gap
Introduc tion

5Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references/second
 = 409.6 GB/s!

 DRAM bandwidth is only 8% of this (34.1 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduc tion

6Copyright © 2019, Elsevier Inc. All rights Reserved

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduc tion

7Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference
 Lower level may be another cache or the main

memory
 Also fetch the other words contained within the block

 Takes advantage of spatial locality
 Place block into cache in any location within its set,

determined by address
 block address MOD number of sets in cache

Introduc tion

8Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set
 Fully associative => one set

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy
 Write-back

 Only update lower levels of hierarchy when an updated block
is replaced

 Both strategies use write buffer to make writes
asynchronous

Introduc tion

9Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block
 Capacity

 Blocks discarded and later retrieved
 Conflict

 Program makes repeated references to multiple addresses
from different blocks that map to the same location in the
cache

Introduc tion

10Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Speculative and multithreaded processors may
execute other instructions during a miss
 Reduces performance impact of misses

Introduc tion

11Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

Introduc tion

12Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology and Optimizations

 Performance metrics
 Latency is concern of cache
 Bandwidth is concern of multiprocessors and I/O
 Access time

 Time between read request and when desired word
arrives

 Cycle time
 Minimum time between unrelated requests to memory

 SRAM memory has low latency, use for
cache

 Organize DRAM chips into many banks for
high bandwidth, use for main memory

M
em

ory Techn ology a nd O
pt im

izatio ns

13Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 SRAM
 Requires low power to retain bit
 Requires 6 transistors/bit

 DRAM
 Must be re-written after being read
 Must also be periodically refeshed

 Every ~ 8 ms (roughly 5% of time)
 Each row can be refreshed simultaneously

 One transistor/bit
 Address lines are multiplexed:

 Upper half of address: row access strobe (RAS)
 Lower half of address: column access strobe (CAS)

M
em

ory Techn ology a nd O
pt im

izatio ns

14

Internal Organization of DRAM

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Techn ology a nd O
pt im

izatio ns

15Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed
 Unfortunately, memory capacity and speed has not kept

pace with processors

 Some optimizations:
 Multiple accesses to same row
 Synchronous DRAM

 Added clock to DRAM interface
 Burst mode with critical word first

 Wider interfaces
 Double data rate (DDR)
 Multiple banks on each DRAM device

M
em

ory Techn ology a nd O
pt im

izatio ns

16Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

em
ory Techn ology a nd O

pt im
izatio ns

17Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

em
ory Techn ology a nd O

pt im
izatio ns

18Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)
 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V
 800 MHz

 DDR4
 1-1.2 V
 1333 MHz

 GDDR5 is graphics memory based on DDR3

M
em

ory Techn ology a nd O
pt im

izatio ns

19Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage
 Low power mode (ignores clock, continues to

refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)
 Higher clock rate

 Possible because they are attached via soldering instead of
socketted DIMM modules

M
em

ory Techn ology a nd O
pt im

izatio ns

20Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Power Consumption
M

em
ory Techn ology a nd O

pt im
izatio ns

21

Stacked/Embedded DRAMs

 Stacked DRAMs in same package as
processor
 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved

M
em

ory Techn ology a nd O
pt im

izatio ns

22Copyright © 2019, Elsevier Inc. All rights Reserved

Flash Memory

 Type of EEPROM
 Types: NAND (denser) and NOR (faster)
 NAND Flash:

 Reads are sequential, reads entire page (.5 to 4
KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes
 SDRAM: 40 ns for first byte, 4.8 GB/s for

subsequent bytes
 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X

slower
 300 to 500X faster than magnetic disk

M
em

ory Techn ology a nd O
pt im

izatio ns

23Copyright © 2019, Elsevier Inc. All rights Reserved

NAND Flash Memory

 Must be erased (in blocks) before being
overwritten

 Nonvolatile, can use as little as zero power
 Limited number of write cycles (~100,000)
 $2/GiB, compared to $20-40/GiB for SDRAM

and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance

and 2X improvement in read performance

M
em

ory Techn ology a nd O
pt im

izatio ns

24Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Dependability

 Memory is susceptible to cosmic rays
 Soft errors: dynamic errors

 Detected and fixed by error correcting codes
(ECC)

 Hard errors: permanent errors
 Use spare rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
em

ory Techn ology a nd O
pt im

izatio ns

25Copyright © 2019, Elsevier Inc. All rights Reserved

Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches
 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching

A
dvanc ed O

pti m
izatio ns

26Copyright © 2019, Elsevier Inc. All rights Reserved

L1 Size and Associativity

Access time vs. size and associativity

A
dvanc ed O

pti m
izatio ns

27Copyright © 2019, Elsevier Inc. All rights Reserved

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanc ed O

pti m
izatio ns

28Copyright © 2019, Elsevier Inc. All rights Reserved

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

A
dvanc ed O

pti m
izatio ns

29Copyright © 2019, Elsevier Inc. All rights Reserved

Pipelined Caches

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch mis-prediction penalty
 Makes it easier to increase associativity

A
dvanc ed O

pti m
izatio ns

30Copyright © 2019, Elsevier Inc. All rights Reserved

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanc ed O

pti m
izatio ns

31Copyright © 2019, Elsevier Inc. All rights Reserved

Nonblocking Caches

 Allow hits before previous misses complete
 “Hit under miss”
 “Hit under multiple miss”

 L2 must support this
 In general, processors can hide L1 miss penalty but

not L2 miss penalty

A
dvanc ed O

pti m
izatio ns

32Copyright © 2019, Elsevier Inc. All rights Reserved

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanc ed O

pti m
izatio ns

33Copyright © 2019, Elsevier Inc. All rights Reserved

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanc ed O

pti m
izatio ns

No write
buffering

Write buffering

34Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks
 Requires more memory accesses but improves

locality of accesses

A
dvanc ed O

pti m
izatio ns

35

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (i = 0; i < N; i = i + 1)
 for (j = 0; j < N; j = j + 1)
 {
 r = 0;
 for (k = 0; k < N; k = k + 1)
 r = r + y[i][k]*z[k][j];
 x[i][j] = r;
};

36

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (jj = 0; jj < N; jj = jj + B)
 for (kk = 0; kk < N; kk = kk + B)
 for (i = 0; i < N; i = i + 1)
 for (j = jj; j < min(jj + B,N); j = j + 1)
 {
 r = 0;
 for (k = kk; k < min(kk + B,N); k = k + 1)
 r = r + y[i][k]*z[k][j];
 x[i][j] = x[i][j] + r;
};

37Copyright © 2019, Elsevier Inc. All rights Reserved

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block)

A
dvanc ed O

pti m
izatio ns

Pentium 4 Pre-fetching

38Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
dvanc ed O

pti m
izatio ns

39Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy

 128 MiB to 1 GiB
 Smaller blocks require substantial tag storage
 Larger blocks are potentially inefficient

 One approach (L-H):
 Each SDRAM row is a block index
 Each row contains set of tags and 29 data

segments
 29-set associative
 Hit requires a CAS

A
dvanc ed O

pti m
izatio ns

40Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy

 Another approach (Alloy cache):
 Mold tag and data together
 Use direct mapped

 Both schemes require two DRAM accesses
for misses
 Two solutions:

 Use map to keep track of blocks
 Predict likely misses

A
dvanc ed O

pti m
izatio ns

41Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy
A

dvanc ed O
pti m

izatio ns

42Copyright © 2019, Elsevier Inc. All rights Reserved

Summary
A

dvanc ed O
pti m

izatio ns

43Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Memory and Virtual Machines

 Protection via virtual memory
 Keeps processes in their own memory space

 Role of architecture
 Provide user mode and supervisor mode
 Protect certain aspects of CPU state
 Provide mechanisms for switching between user

mode and supervisor mode
 Provide mechanisms to limit memory accesses
 Provide TLB to translate addresses

V
irtual M

em
ory and V

irtual M
achines

44Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Machines

 Supports isolation and security
 Sharing a computer among many unrelated users
 Enabled by raw speed of processors, making the

overhead more acceptable

 Allows different ISAs and operating systems to be
presented to user programs

 “System Virtual Machines”
 SVM software is called “virtual machine monitor” or

“hypervisor”
 Individual virtual machines run under the monitor are called

“guest VMs”

V
irtual M

em
ory and V

irtual M
achines

45Copyright © 2019, Elsevier Inc. All rights Reserved

Requirements of VMM

 Guest software should:
 Behave on as if running on native hardware
 Not be able to change allocation of real system

resources
 VMM should be able to “context switch”

guests
 Hardware must allow:

 System and use processor modes
 Privileged subset of instructions for allocating

system resources

V
irtual M

em
ory and V

irtual M
achines

46Copyright © 2019, Elsevier Inc. All rights Reserved

Impact of VMs on Virtual Memory

 Each guest OS maintains its own set of page
tables
 VMM adds a level of memory between physical

and virtual memory called “real memory”
 VMM maintains shadow page table that maps

guest virtual addresses to physical addresses
 Requires VMM to detect guest’s changes to its own page

table
 Occurs naturally if accessing the page table pointer is a

privileged operation

V
irtual M

em
ory and V

irtual M
achines

47Copyright © 2019, Elsevier Inc. All rights Reserved

Extending the ISA for Virtualization

 Objectives:
 Avoid flushing TLB
 Use nested page tables instead of shadow page

tables
 Allow devices to use DMA to move data
 Allow guest OS’s to handle device interrupts
 For security: allow programs to manage

encrypted portions of code and data

V
irtual M

em
ory and V

irtual M
achines

48

Fallacies and Pitfalls

 Predicting cache performance of one
program from another

 Simulating enough instructions to get
accurate performance measures of the
memory hierarchy

 Not deliverying high memory bandwidth in
a cache-based system

Copyright © 2019, Elsevier Inc. All rights Reserved

	Slide 1
	Introduction
	Memory Hierarchy
	Memory Performance Gap
	Memory Hierarchy Design
	Performance and Power
	Memory Hierarchy Basics
	Memory Hierarchy Basics
	Memory Hierarchy Basics
	Memory Hierarchy Basics
	Memory Hierarchy Basics
	Memory Technology and Optimizations
	Memory Technology
	Internal Organization of DRAM
	Memory Technology
	Memory Optimizations
	Memory Optimizations
	Memory Optimizations
	Memory Optimizations
	Memory Power Consumption
	Stacked/Embedded DRAMs
	Flash Memory
	NAND Flash Memory
	Memory Dependability
	Advanced Optimizations
	L1 Size and Associativity
	L1 Size and Associativity
	Way Prediction
	Pipelined Caches
	Multibanked Caches
	Nonblocking Caches
	Critical Word First, Early Restart
	Merging Write Buffer
	Compiler Optimizations
	Blocking
	Blocking
	Hardware Prefetching
	Compiler Prefetching
	Use HBM to Extend Hierarchy
	Use HBM to Extend Hierarchy
	Use HBM to Extend Hierarchy
	Summary
	Virtual Memory and Virtual Machines
	Virtual Machines
	Requirements of VMM
	Impact of VMs on Virtual Memory
	Extending the ISA for Virtualization
	Fallacies and Pitfalls

