Computer Architecture: The Beginning

Jaynarayan Tudu
Computer Science and Engineering Indian Institue of Technology Tirupati, India

> CS5202 - Lecture 0
> $18^{\text {th }}$ Jan, 2022

VLSI Past and Lesson Learnt

- It all started with Moore's Law
- The corollary of Moore's Law
- Performance
- Power, Energy and Temperature (the Dennard Scaling)
- Reliability
- Complexity of the Design
- Evolution in computing

CMOS Transistor

Figure: nmos and pmos transistors ${ }^{1}$
${ }^{1}$ Taken from: CMOS VLSI Des, Weste and Hariss

Transistor and IC History

Figure : The first transistor and IC built at AT\&T Bell Lab ${ }^{2}$
${ }^{2}$ Taken from: CMOS VLSI Des, Weste and Hariss

Transistor Scaling: Moore's Law

Manufacturing Cost: Moore's Law

Transistor count

Figure 1. Evolution of Intel microprocessors 1971-2009.

Intel 4004, 1971
1 core, no cache 23 K transistors

Intel 8088, 1978
1 core, no cache
29 K transistors

Intel Mehalem-EX, 2009
8 cores, 24 MB cache 2.3B transistors

Figure: Its is now in billion era

Transistor Production

Figure: It is growing every year [IEEE Spectrum]

Transistor Technology Trend

Figure: Scaling driven technology

Trends in Functionality in Microprocessor

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2015 by K. Rupp

Figure: Microprocessor Functionality

The highest till date: IBM P6 at 5.0 GHz .

Frequency [ITRS 2013]

Figure : the rate has slowed down

Intel Microprocessor Trend: Clock frequency

Figure : Clock frequency has been consistently in rise!

Power Density Trend [ITRS 2015 - A Kahng, UCSD]

Figure: Peak power density trend

Power Consumption [Borkar et al]

Figure 7. Unconstrained evolution of a microprocessor results in excessive power consumption.

Figure: Processor power consumption

Heat Flux [IBM — ITRS 2015 meeting]

Figure: Heat flux Watt/area

There is a need of new device technology to tackle the heat flux!

Exascale Computing: Trends in Top500.org

- Power and Energy will pose a major challenge [Borkar 2011].
- GWatt consumption is expected.

Exascale Computing: Trends in Top500.org

- Power and Energy will pose a major challenge [Borkar 2011].
- GWatt consumption is expected.

Projected Performance Development

Power Trend in Top500

Performance per Watt Trend [top500.org]

12000

10000
Average Megaflops per watt
Top 10 Green500 Supercomputers

8000

6000

4000

2000

0

Memory Wall: Hindrance in performance

Emerging Memory Technology [ITRS 2015 meeting]

Solution: The idea is to bring in hierarchy system!

Figure : Focus is on non-volatile memory

On die Cache [Borkar et al]

Figure 5. Evolution of on-die caches.

Figure: Suppose to increase

Emerging Architecture

von Neumann

- The traditional microprocessor

Non von Neumann

- Cellular Automata
- Co-located memory-logic [procesor-in-memory, memory-in-logic, nonvolatile logic]
- Reconfigurable computing
- Cognitive computing [neuro morphic, machine learning]
- Statistical and stochastic computing [statistical inference, approx computing]

Emerging Architecture: Data and learning

In Design or test production

- Tensor Processing Unit [Google ML processing for Search and Language]
- Microsoft Azure with Stratix 10 (intel) FPGA
- XPU by Xiling for Machine learning
- IPU (Intelligent Proc Unit) by Graphcore
- DPU (Data flow computnig) by Wavecore
- DLU by Fujitsu

Check out top500 for more information.

Trends in loT

Summary and Action Items

- There are problems to be solved
- Teaching and research to continue...

The big question

How to push forward the performance while controlling significantly the power/energy dissipation/consumption?

CS5202: Course Outline

- Performance Evaluation [in depth]
- Instruction set Architecture: CISC vs. RISC [in depth]
- Memory system architecture: Main memory and cache architecture [in depth]
- Pipelining and Superscalar Architecture [in depth]
- VLIW and Multi-scalar Architectures [introductory]
- Simultaneous Multi-threaded (SMT) Architecture [in depth]
- Multi-core Architecture [introductory]
- SIMD, GPU Architecture and Accelerator Design [introductory]

Course Schedule and Meeting

- Schedule:

Slot: G
Tue, Thu, Fri: 1 pm to $1: 50$ pm

- Meeting:
- TAs:
- Instructor: Jaynarayan T Tudu jtt[at]iittp. ${ }^{* * * * *}$
\#1, 2nd Floor, Annex building,
Temp Campus, IIT Tirupati
http://jayresearch.github.io

Course Evaluation

Quizes (Qz1: 10 and Qz2: 10) 20\% Class Test and Participation 10\%
Assignment (Programming/simulator) 10\%
Project (Group of 2) 20\%
Final Test 40\%

Reference and Reading Materials

- J. L. Hennessy and D. A. Patterson, Computer Architectures: A Quantitative Approach, Morgan Kaufmann Publishers, $5^{\text {th }}$ Edition.
- J.P. Shen and M.H. Lipasti, Modern Processor Design, MC Graw Hill, Crowfordsville, 2005
- Current Literature (from ISCA, Micro, HPCA, ICCD, and IEEE Trans. on Computers, IEEE Architecture Letters)

The other resources:

- http://pages.cs.wisc.edu/ arch/www/
- Prof. Onur Mutlu: https://users.ece.cmu.edu/ omutlu/
- Almost all universities have very strong research group
- SPEC Benchmark: https://www.spec.org/benchmarks.html
- Simulators: simplescalar, sniper, gem5, gpgpu-sim, tejas
- DBLP: https://dblp.uni-trier.de/

Research in India

- IISc Bangalore: Prof Matthew Jacob, Prof. R Govind Rajan, Dr. Uday Bandagolu, Dr. Arka Basu, Prof. S K Nandi.
- IIT Bombay: Prof. Virendra Singh, Prof. Sachin Patkar, and Prof. Madhava Desai.
- IIT Madras: Prof. V Kamakoti, Dr. Rupesh Nasre, Prof. Madhu Mutyam
- IIT Delhi: Prof. Pritiranjan Panda, Prof. Smruti Sarangi
- IIT Kanpur: Prof. Mainak Chaoudhuri, Dr. Biswabandan Panda
- IIT/IIIT Hyderabad: Dr. Mittal, Dr. Lavanya

Thank You

Acknowledgement:

- Prof Virendra Singh, IIT Bombay
- Prof Matthew Jacob, IISc Bangalore
- Prof R Govind Rajan, IISc Bangalore
- Prof C Chandrasekhar, IIT Madras
- Prof Kewal Saluja, Uni of Wisconsin
- Prof Adit Singh, Auburn University
- Prof Ravi lyer, IIT Tirupati

