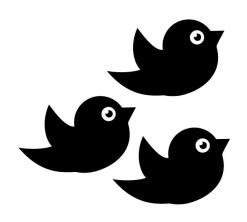

Counting to Computing

Jaynarayan T Tudu Computer Science and Engg IIT Tirupati

Our Curiosity: We want to solve problem

When we see a bird we say there is one bird!

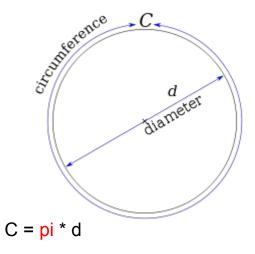

When we see two birds..... three birds.... four birds.... five birds....

What are we doing?

Counting!

Our Curiosity: We want to solve problem

When we see something like this.... We often start to think in terms of number, how many birds?


2

Calculate!

Calculation/Counting: How easy it is?

How many minutes u need?

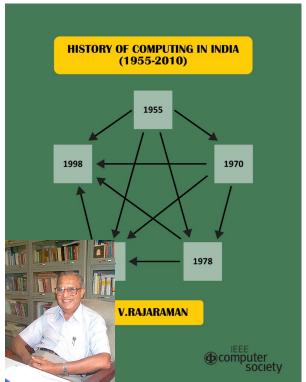
Little difficult in terms of time!

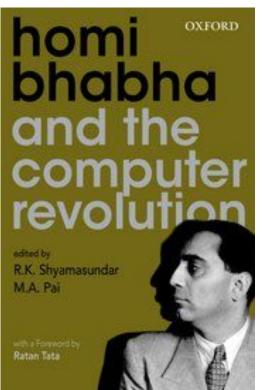
3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 7067.....

.....still computing

Need of Machine: How it started?


2400 BC: Abacus was used by Babylonians for +, -.




1642: Pascaline, invented by Blaise Pascal to help his father for tax accounting.

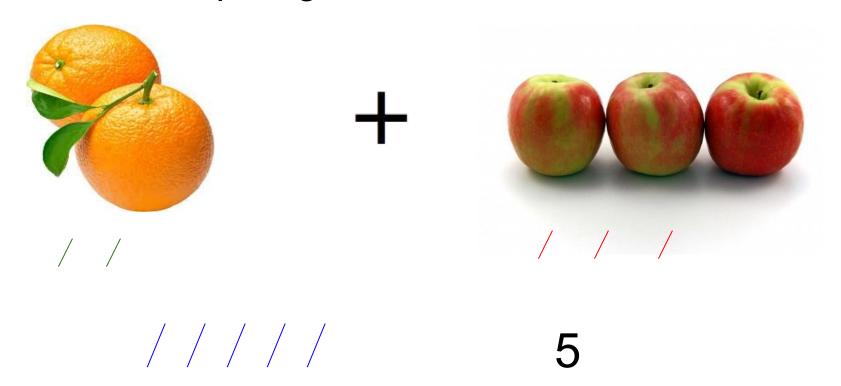
History of Computing in INDIA

The three Cs

Counting

Next is for YOU?

Computing



Calculating

Trails of Computing Mind: thoughts of modern computer

1936: A-Machine

```
R/w first-number : [*]*+*** \{0\}
```

R/w -first-number: * [*] + * * * { 1}

R/w first-number: **[+]*** { 2}

R/w second-number: * * * [*] * * { 3}

R/w second-number: * * * * [*] * { 4}

R/w second-number: * * * * * [*] { 5}

R/w second-number: * * * * * * [_] { 6}

Override-last-* : * * * * * [*] _ { 7}

R/w beginning : * * * * [*] _ _ { 8}

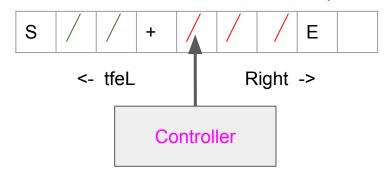
R/w beginning : * * * [*] * _ _ { 9}

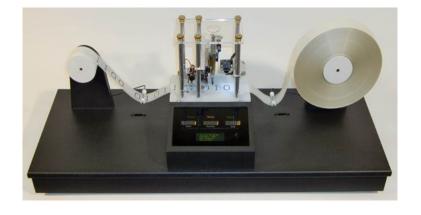
R/w beginning : **[*] **__ {10}

R/w beginning : * [*] * * * _ _ {11}

R/w beginning : [*]****__{12}

R/w beginning : [_] * * * * * __ {13}

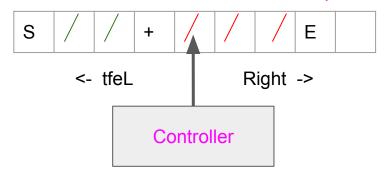

HALT :_[*] * * * * * __ {14}



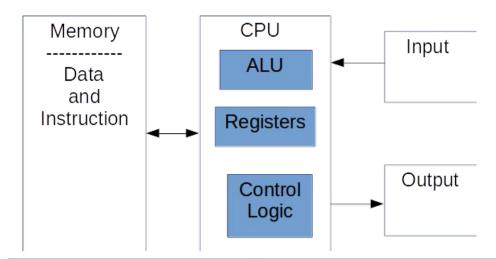
Alan J Turing (Mathematician and Computer Scientist)

Turing Machine (A-Machine)

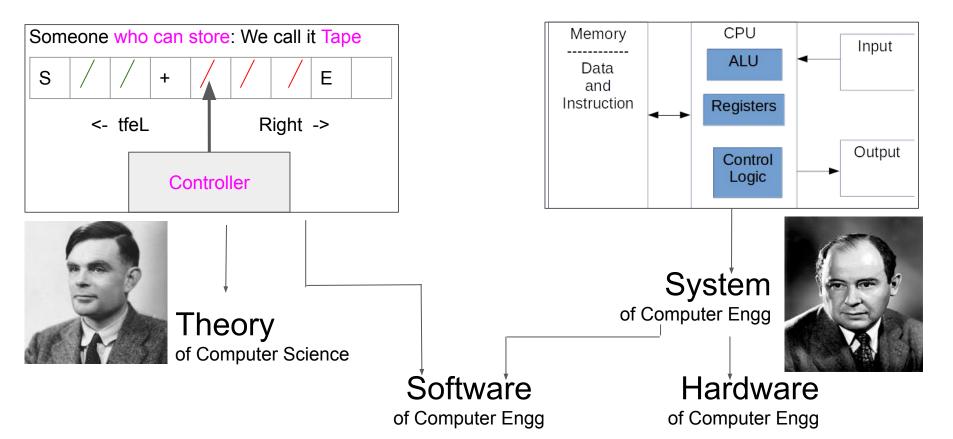
Someone who can store: We call it Tape



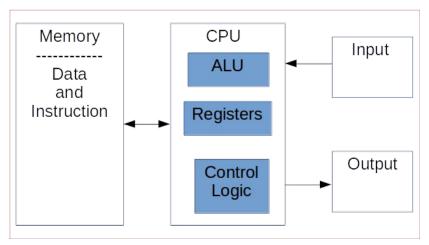
Theoretical Description of Turing Machine


Physical Implementation of Turing Machine Image source: http://aturingmachine.com/

1945: von Neumann Architecture



Turing Machine



Memory, Register	Таре
Control Logic	Controller (FSM)
Data and Instruction	Symbols
Arithmetic and Logic Unit	Addition (+) etc

The Two Ideas

The Next Set of Thoughts...

von Neumaan Architecture (Princeton Architecture)

Stored Program Concept

HOW the storing and programing can be performed in physical machine

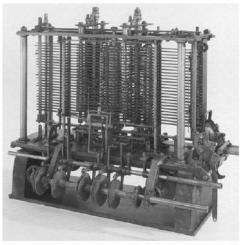
First requirement:

Representation of Data or Information

Data Representation

The human way:

Decimal system [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]


The possible operations:

+, - , * , / etc.....

The Difficulty:

It was very difficult to represent the 0 - 9 digits physically.

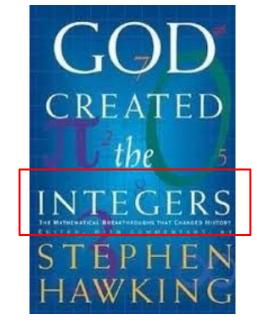
Therefore, people needed a much simpler representation

1871: Analytical Engine (based on decimal system)

Who designed?

Binary System - Digital System

Use only two things and represents the whole universe! (the physical world has duality).


Lets the two things be: 0 and 1

Integers in decimal:

0	10	20	30 90
1	11	21	31
2	12	22	32
3	13	23	33
4	14	24	34
5	15	25	35
6	16	26	36
7	17	27	37
8	18	28	38
9	19	29	3999

Integers in binary:

0	10	100	1000	
1	11	101	1001	
		110	1010	
		111	1011	
			1100	
			1101	
			1110	
			1111	

How to perform operations?

$$2 + 3 = 5$$

$$10 + 11 = 101$$

Similarly other operations can be performed!

Integers in decimal:

```
      0
      10
      20
      30
      90

      1
      11
      21
      31
      90

      2
      12
      22
      32

      3
      13
      23
      33

      4
      14
      24
      34

      5
      15
      25
      35

      6
      16
      26
      36

      7
      17
      27
      37

      8
      18
      28
      38

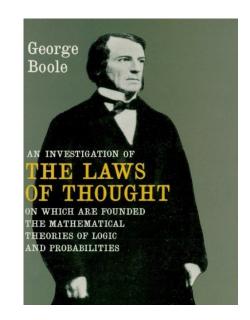
      9
      19
      29
      39
      99
```

Integers in binary:

Two questions:

- 1) How do we represent ZERO and ONE physically?
- 2) How do we perform operations?

George Boole, The laws of thought.


ZERO - FALSE - OFF - OPEN

AND OR NOT

ONE - TRUE - ON - CLOSE

XOR NOR NAND XNOR

Input	Output
Α	A'
0	1
1	0

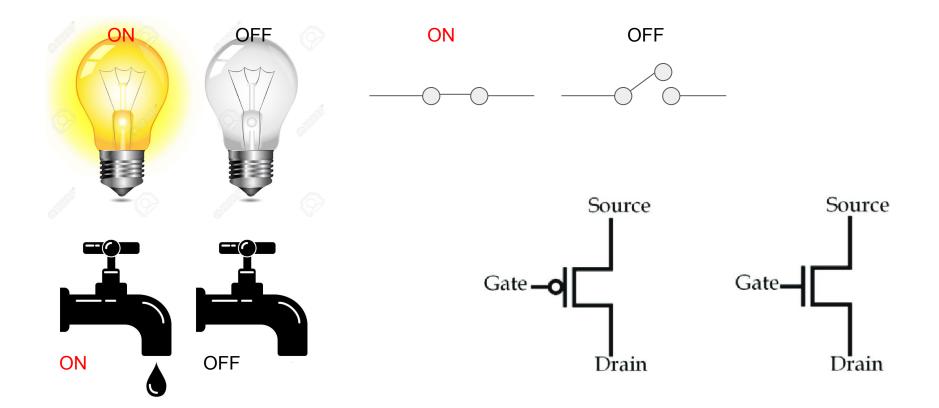
One questions:

1) How to map logical operation with arithmetic operations?

ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION

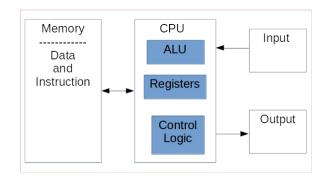
AND OR NOT
XOR NOR NAND
XNOR

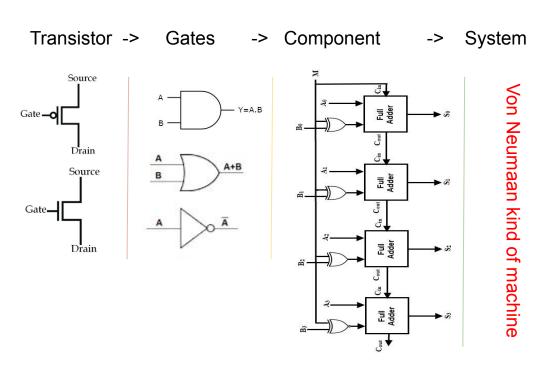
	Truth	Table		
Inj	Input		Output	
A	В	Sum	Carry	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	


Arithmetic

Logic

Example: Addition of two bits


Arithmetic and logic unit (ALU)


Binary System | Boolean Algebra | Device

From Device to von Neumaan Architecture

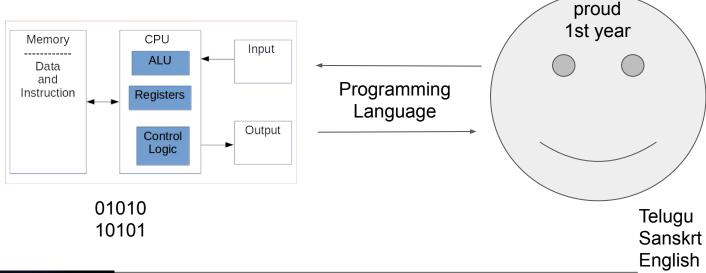

Goal: to build a computer

How to Talk with the Machine!

How do you talk with a Chinese friend?

Scenario 1:

Balaji: Only Telugu Tiang: Only Chinese


Solution: Baltiang: Telugu + Chinese

→Third person

Computer understand only ZEROs and ONEs

How to Talk with Machine

The Modern Computer: Outside

A computer system is fitted with several Components.

- CPU
- Monitor, touch screen
- Keyboard
- Smart pad
- Audio devices
- Printer, Scanner, Camera
- Magnetic Disk, Pendrive, External HD
- There could be many more.....

The Modern Computer: Inside

My suggestion for your purchase:

Go for a Laptop

- Price range: 30K - 70K

Processor: Intel i5 - i7

(Don't go for i9)

: AMD A series A6-A8

ARM Cortex A series

- Clock: 1.4 GHz - 3 GHz

- (risky to go for 4GHz)

RAM (DDR4, 8 - 16GB)

- Hard Disk: 500 GB is enough

Battery: removable with 8 - 10 hrs backup.

The Bigger and Smaller: Variety of system

From micro-controller to super-computer!

Summit has 4,356 nodes, Each Node = Two 22-core **Power9** CPUs,

Graphics: six NVIDIA Tesla V100 GPUs

Each V100 = 640 Tensor Cores + 5120 CUDA cores

most cases: users are from non-computer science background.

The Bigger and Smaller

Why so many different computers?

Explosion modeling	Fluid dyna	Biomedical imaging: optical tomography with finite elements
Physics: relativity		Regional ocean modeling
Molecular dynamics	Home Appliances	modeling
		Weather forecasting
Social Networking	Road traffic	Data collection (surveillance camera)
	You Tube	

The Current Status: World, India and IITT

- Better and faster is the human need! (need of research)
- World is looking for Quantum Computer
- Al and Machine Learning! (at least once in a day you will hear abt this)
- To explore Neuromorphic Computer

- India needs own Computing capabilities
- Example: Shakti processor is developed indigenously at IITM
- And, IIT Tirupati certainly need to contribute for India

Suggestions

Everyone must learn to use some computer :)

Every one must learn Programming: C/C++ and Python

Good programmer: C/C++, Python + Data Structure and Algorithm

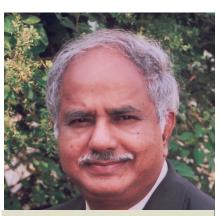
Very Good programmer: Good Programmer + Computer Architecture

Very very good programmer: Do BTech in Computer Science:)

Suggestions

Online Learning:

- Participate in online competitions
- Credit online courses
- Join online group discussion
- Subscribe to online technical journals and news
- Keep track of various events in other IITs as well as around the world university.
- For any thing else talk with your seniors and faculty advisor or to any faculty you find in corridor


Career and Future

Career and Future

You can create more....

We have plenty of place to work....

The world

of Computer Science and Engineering

